Теплотехнический расчёт здания – считаем теплопотери по площади и по объему

Теплотехнический расчёт здания – считаем теплопотери по площади и по объему

По вышеприведенной формуле можно посчитать теплопотери всего здания. Для расчета теплопотерь отдельного помещения нужно в формулу подставить объем (по наружному обмеру) этого помещения, а также применить следующие коэффициенты:
для средних помещений нижних этажей – 1,1;
для средних помещений средних этажей – 0,8;
для средних помещений верхних этажей – 1,3;
для угловых помещений нижних этажей – 1,9;
для угловых помещений средних этажей – 1,5;
для угловых помещений верхних этажей – 2,2;
для средних помещений одноэтажных зданий – 0,9;
для угловых помещений одноэтажных зданий – 1,5;
для средних лестничных клеток – 1,2;
для угловых лестничных клеток – 2,0.

Начинаем считать (расчет пока только для жилых зданий). Одним из главных параметров, без которого расчет просто невозможен, является расчетная температура наружного воздуха. Здесь тоже все не так просто, во времена “хрущевок” она рассчитывалась с учетом инерционности (массивности) наружных стен. Однако для расчета инерционности опять-таки необходимо знание материалов стен и их характеристик, поэтому будем считать “как положено сейчас”, держа в уме, что если стена не “в три кирпича” толщиной, то расчетную температуру надо бы градусов на 3÷5 снизить.
Теперь выбираем населенный пункт, для которого необходимо выполнить расчет. Разумеется, в СНиП “Климатология и геофизика” есть данные не для всех населенных пунктов бывшего СССР, поэтому надо выбрать наиболее близкий из имеющихся. Причем близкий территориально не всегда значит близкий по климату. Нередки случаи, когда довольно близко расположенные населенные пункты сильно отличаются по климату. Причины могут быть разные: населенные пункты находятся по разные стороны горной гряды, на разной высоте от уровня моря и т.д.
В функцию выбора заложены данные СНиПа времен СССР. Я переименовал республики в государства, но все субъекты (области, автономные республики, края, населенные пункты и т.д.) остались старыми. То есть если Ваш населенный пункт/край/область переименовывался либо перешел в подчинение в другой регион – ищите его по старым данным.
В левом окне выбираем государство, в среднем появляется список областей/регионов, после выбора области/региона в правом окне появляется список населенных пунктов. В некоторых государствах областей нет, поэтому в среднем окне появится название государства. В некоторых государствах есть населенные пункты, которые не входят в области/регионы. Тогда в среднем окне в списке, кроме названий областей/регионов, появится также название государства, выбрав которое, в правом окне получим список населенных пунктов, не входящих в области/регионы.

Рядом с названием населенного пункта указана его расчетная температура наружного воздуха (средняя температура наиболее холодной пятидневки обеспеченностью 0,92).

Теперь подберем отопительный прибор. Для этого необходимо знать следующие параметры: температуру воды на входе в прибор (температуру подачи), температуру воды на выходе из прибора (температуру обратки) и температуру воздуха в помещении (уже введена в верхней форме).
Если отопление индивидуальное (используется отдельный котел), то температуру подачи рекомендую брать на 5 градусов ниже максимальной температуры котловой воды (смотреть в паспорте котла или в интернете). Обратную температуру рекомендую принимать ниже температуры подачи на: для частных домов с большой длиной труб, большим количеством приборов, вентилей и т.п. – 20 градусов; для частных домов с небольшой длиной труб, небольшим количеством приборов, вентилей и т.п. – 15 градусов; для квартир в многоэтажках с большой длиной труб, большим количеством приборов, вентилей и т.п. – 10 градусов; для квартир в многоэтажках с небольшой длиной труб, небольшим количеством приборов, вентилей и т.п. – 5 градусов.
В случае с отоплением от коммунальных котельных – ситуация сложнее. Теоретически температура теплоносителя определяется тепловым графиком (наиболее распространенный – 150/70), т.е. в морозы до -40 температура воды в сетях должна быть около 150 градусов. В элеваторном узле (в здании) температура понижается до 105 или 95 градусов в морозы. Кроме того, при последовательной схеме подключения (т.н. однотрубная схема) максимальная температура попадает только в первый по стояку прибор.
Плюс к этому изношенность старых сетей и цена энергоносителей приводят к тому, что реально температура воды еще больше снижается. Советовать в такой ситуации что-либо сложно, ну, например, пообщаться с обходчиком абонентских вводов тепловых сетей или оператором ЦТП (центрального теплового пункта) по поводу температуры сетевой вода, а с местным сантехником – о температуре воды в домовых сетях.

Вот, собственно, пока и все. Вопросы, замечания и предложения можно оставить в виде комментария.

Расчет систем отопления (часть 2 -Теплотехнический расчет здания)

Основой для определения тепловой нагрузки систем отопления является процедура проведения теплотехнического расчета конструкций здания с учетом всех конструктивных особенностей используемых строительных материалов и их теплоизоляционных свойств. В расчетах также учитывается ориентация здания по сторонам света, наличие естественной или механической систем вентиляции и многие другие факторы теплового баланса помещений.

Методы расчета тепловой нагрузки системы отопления

  1. Расчет потерь тепла по площади помещений.
  2. Определение величины теплопотерь исходя из наружного объема здания.
  3. Точный теплотехнический расчет всех конструкций жилого дома с учетом теплофизических коэффициентов материалов.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Расчет тепловой мощности исходя из объема помещения

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

Тепловая мощность системы отопления для здания или помещения с потолками выше стандартных рассчитывается исходя из следующего условия:

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Инфильтрация воздуха или вентиляция зданий

Все здания в особенности жилые имеют свойство «дышать», то есть проветриваться различными способами. Это обусловлено созданием разряженного воздуха в помещениях за счет устройства вытяжных каналов в конструкциях дома либо дымоходов. Как известно, вентиляционные каналы создаются в зонах с повышенными выделениями загрязнений, таких как, кухни, ванные комнаты и санузлы.

Таким образом, при работе системы вентиляции или при проветривании соблюдается главное правило создания благоприятной среды воздуха в жилых зданиях: направление движения свежего воздуха должно быть организовано из помещений с постоянным пребыванием людей в направлении помещений с максимальным уровнем загрязнения.

То есть при правильном воздухообмене приточный воздух поступает в помещение через окно, вентиляционный клапан или приточную решетку и удаляется в кухнях и санузлах.

При расчете теплопотерь знания имеет принципиальное значение, какой способ вентиляции жилых помещений будет выбран:

  • Устройство механической вентиляции с подогревом приточного воздуха.
  • Инфильтрация — неорганизованный воздухообмен через неплотности в стенах, при открывании окон или при использовании заранее установленных воздушных клапанов в конструкции стен или оконных стеклопакетах.

В случае применения в жилом здании сбалансированной системы вентиляции (когда объем приточного воздуха больше или равен вытяжному, то есть исключаются любые прорывания холодного воздуха в жилые помещения) воздух, поступающий в жилые помещения, предварительно прогревается в вентиляционной установке. При этом мощность, необходимая для нагрева вентиляции, учитывается в расчете мощности котельного оборудования.

Расчет вентиляционной тепловой нагрузки производится по формуле:

Если в жилых помещениях отсутствует организованный воздухообмен, то при расчете теплопотерь здания производится учет тепла, затрачиваемого системой отопления на нагрев инфильтрационного воздуха. При этом обогрев воздуха, поступающего в помещения осуществляется радиаторами систем отопления, то есть учитывается в их тепловой нагрузке.

Если в помещениях установлены герметичные стеклопакеты без встроенных воздушных клапанов, то потери тепла на нагрев воздуха, тем не менее учитываются. Это обусловлено тем, что в случае кратковременного проветривания, поступивший холодный воздух все равно требуется нагревать.

Читайте также:  Шоколадный цвет в интерьере - фото лучших идей безупречного сочетания

Для более комфортной вентиляции встраивается приточный стеновой клапан.

Учет количества инфильтрационной тепловой энергии производится по нескольким методикам, а в тепловом балансе здания в расчет принимается наибольшее из значений.

Например, количество тепла на нагрев воздуха, проникающего в помещения для компенсации естественной вытяжки, определяется по формуле:

Количество воздуха, поступающего в зимний период в жилые помещения, как правило, обусловлено работой естественных вытяжных систем, поэтому в одном случае принимается равным объему вытягиваемого воздуха.

Количество вытяжки в жилых помещениях определяется согласно СНиП 41-01-2003 по нормативным показателям удаления воздуха от плит и санитарных приборов.

  • От кухонной плиты – электрической 60 м?/час или газовой 90 м?/час;
  • Из ванны и санузлов по 25 м?/час

Во втором случае данный показатель инфильтрации определяется исходя из санитарной нормы свежего наружного воздуха, который должен поступать в помещение для обеспечения оптимального и качественного состава воздушной среды в жилых помещениях. Этот показатель определяется по удельной характеристике: 3 м?/час на 1м? жилой площади.

За расчетное значение принимается наибольший расход воздуха и соответственно большее количество теплопотерь на инфильтрацию.

Пример: Так как здание, рассматриваемое в примере, построено по каркасному типу с установкой окон в деревянных переплетах, то при создании вытяжной вентиляции на кухне и в санузлах объем инфильтрации будет достаточно высок. Дома такого типа, как правило, являются наиболее «дышащими».

Инфильтрационная составляющая определяется согласно выше приведенным методикам. Расчет производится для всего жилого дома при условии, что на кухне установлена электроплита, на первом этаже находится санузел и ванная.

То есть объем вытяжного воздуха по первой методике составляет Lвыт=60+25+25=110 м?/ч,

а по второй методике санитарная норма приточного воздуха Lприт=3м?/ч*62м?(жилая площадь)=186 м3/час.

К расчету принимаем максимальное количество воздуха.

Qинф=0,28*186*1,2*1,005*(22+28)=3 140 Вт, что составляет 44Вт/м?.

Расчет и подключение теплоаккумулятора для твердотопливного котла

Равномерность работы системы отопления и минимальное время за ее присмотром – мечта каждого владельца собственного дома. Не на последнем месте стоит экономичность. Теплоаккумулятор для отопления (ТА) объединяет и выполняет вышеуказанные функции. Данное специальное устройство самостоятельно в нужный момент уменьшает или увеличивает температуру теплоносителя. В результате достигается тепловой комфорт в отапливаемых помещениях. Вмешательство человека в этом процессе исключается. О том, как подключить теплоаккумулятор к твердотопливному котлу будет рассказано далее.

Теплоаккумулятор для домашней системы отопления

Назначение теплоаккумулятора

Установленный в системе отопления он в автоматическом режиме:

  • накапливает излишнее тепло;
  • отдает накопленное тепло теплоносителю в нужный момент;
  • предотвращает закипание воды в котле при отсутствии электроэнергии;
  • обеспечивает работу котла без вмешательства человека.

Буферная емкость предназначена для работы в автоматическом режиме

В теплоаккумуляторе накопителем излишков тепла является буферная емкость для воды. (На фото красная). Представляет собой ёмкость для воды со змеевиком, укрытую теплоизоляцией. Пока горят дрова, она накапливает избытки тепла. Как только котел перестает выдавать нужную температуру, излишнее тепло из этой емкости отдается в систему отопления. Вода в радиаторах не остывает. Система отопления в домах не устанавливается без электрических насосов, которые обеспечивают циркуляцию теплоносителя. Не трудно представить, что происходит в момент перебоев с электроэнергией. Дрова горят, тепло выделяется, а вода неподвижно стоит в трубах. Начинается ее закипание в котле.

Если этот момент упустить, то возможен взрыв со всеми вытекающими последствиями. Теплоаккумулятор для отопления препятствует этому. Пока горит топливо, его приходится периодически добавлять. Если не сделать это вовремя, котел потухнет. Чем это опасно в сильные морозы, знает каждый. Имея ТА процесс между закладками дров увеличивается в разы. При этом не создается опасность размораживания системы из-за затухания котла.

Выбираем теплоаккумулятор

ТА выбирают проектируя систему отопления. Правильно подобрать теплоаккумулятор помогут инженеры-теплотехники. Но, если невозможно воспользоваться их услугами, придется выбирать самостоятельно. Сделать это не трудно.

Теплоаккумулятор для твердотопливного котла

Главными критериями при подборе этого устройства принято считать следующие:

  • давление в системе отопления;
  • объем буферной емкости;
  • наружные размеры и вес;
  • оснащение дополнительными теплообменниками;
  • возможность установки дополнительных устройств.

Напор воды (давление) в системе отопления – основной показатель. Чем он выше, тем теплее в обогреваемом помещении. Учитывая этот параметр, при выборе теплоаккумулятора для твердотопливных котлов обращается внимание на максимальное давление, которое он способен выдерживать. Теплоаккумулятор для твердотопливного котла, показанный на фото, изготовлен из нержавеющей стали, выдерживает высокое давление воды.

Объем буферной емкости . От него зависит способность накопления тепла для системы отопления при работе. Чем он больше, тем больше тепла накопится в емкости. Здесь нужно учитывать, что повышать предел до бесконечности бессмысленно. Но если воды будет меньше нормы, устройство просто не будет выполнять возложенную на него функцию накопления тепла. Поэтому для правильного выбора теплоаккумулятора придется сделать расчет его буферной емкости. Чуть позднее будет показано, как он выполняется.

Наружные размеры и вес . Это тоже важные показатели при выборе ТА. Особенно в уже построенном доме. Когда расчет теплоаккумулятора для отопления произведен, доставка к месту установки осуществлена, возможно возникновение проблемы с самой установкой. По габаритным размерам он может просто не вписаться в стандартный проем двери. Помимо этого, ТА большой емкости (от 500 л.) устанавливаются на отдельный фундамент. Массивное устройство, заполненное водой станет еще тяжелее. Эти нюансы нужно учитывать. Но выход найти легко. В этом случае приобретается два теплоаккумулятора для твердотопливных котлов с суммарным объемом буферных емкостей, равным расчетному для всей системы отопления.

Оснащение дополнительными теплообменниками . При отсутствии в доме системы ГВС, собственного контура подогрева воды в котле, лучше сразу приобрести ТА с дополнительными теплообменниками. Для проживающих в южных районах полезным будет подключение солнечного коллектора к ТА, что станет дополнительным бесплатным источником тепла в доме. Простой расчёт системы отопления покажет, сколько дополнительных теплообменников желательно иметь в теплоаккумуляторе.

Возможность установки дополнительных устройств . Здесь подразумевается установка ТЭНов (трубчатых электрических нагревателей), КИП (контрольно-измерительных приборов), предохранительных клапанов и других устройств, обеспечивающих бесперебойную и безопасную работу буферной емкости в устройстве. Например, в случае аварийного затухания котла, температуру в системе отопления будут поддерживать ТЭНы. В зависимости от объема обогрева помещений комфортной температуры они могут не создать, но размораживание системы предотвратят обязательно. Наличие КИП позволит своевременно обратить внимание на возможные неполадки, возникшие в системе отопления.

Важно. Выбирая теплоаккумулятор для отопления заостряйте внимание на его теплоизоляцию. От нее зависит сохранение полученного тепла.

Расчет объема буферной емкости котла

Самым оптимальным решением этой задачи станет поручение ее выполнения инженерам-теплотехникам. Расчет объема теплоаккумулятора для всей системы отопления частного дома требует учитывать различные факторы, известные только им. Несмотря на это, предварительные подсчеты можно сделать самостоятельно. Для этого кроме общих знаний физики и математики понадобятся калькулятор и чистый лист бумаги.

Находим следующие данные:

  • мощность котла, кВт;
  • время активного горения топлива;
  • тепловая мощность обогрева дома, кВт;
  • КПД котла;
  • температуры в трубе подачи и «обратке».

Рассмотрим пример предварительного расчета. Обогреваемая площадь – 200 м 2 , время активного горения котла – 8 часов, температура теплоносителя при нагреве – 90° С, в обратном контуре – 40° С. Расчетная тепловая мощность обогреваемых помещений – 10 кВт. При таких исходных данных тепловой прибор получит 80 кВт (10×8) энергии.

Делаем расчет буферной емкости твердотопливного котла по теплоемкости воды:

где:
m – масса воды в емкости (кг);
Q – количество тепла (Вт);
∆t – разность температуры воды в трубе подачи и «обратке» (°С);
1,163 – удельная теплоемкость воды (Вт/кг °С).

Расчет буферной емкости твердотопливного котла

Подставив цифры в формулу получим 1375 кг воды или 1,4 м 3 (80000/1,163×50). Таким образом для системы отопления дома площадью 200 м 2 надо установить ТА емкостью 1,4 м 3 . Зная эту цифру можно смело идти в магазин и смотреть, какой теплоаккумулятор приемлем.

Габариты, цена, комплектация, производитель уже легко определяемы. Сопоставляя известные факторы не трудно сделать предварительный выбор теплового аккумулятора для дома. Такой расчет актуален в случае, когда дом построен, система отопления уже смонтирована. Результат расчета покажет, нужно ли разбирать дверные проемы из-за габаритов ТА. Оценив возможность его установки на постоянное место, делается окончательный расчет теплоаккумулятора для твердотопливного котла, установленного в системе.

Собрав данные по системе отопления выполняем вычисления по формуле:

где:
W – количество необходимого тепла для нагрева теплоносителя;
m – масса воды;
c – теплоемкость;
∆t – температура подогрева воды;

Кроме этого понадобится значение k – КПД котла.

Из формулы (1) находим массу:
m = W/(c×∆t) ( 2 )

Поскольку КПД котла известен, уточняем формулу (1) и получаем
W = m×c×∆t×k ( 3 )
откуда находим уточненную массу воды
m = W/(c×∆t×k) ( 4 )

Рассмотрим, как рассчитать теплоаккумулятор для дома. В системе отопления установлен котел мощностью 20 кВт (указана в паспортных данных). Топливная закладка прогорает за 2,5 часа. Для отопления дома нужно 8,5 кВт/1 час энергии. Значит, за время прогорания одной закладки будет получено 20×2,5 = 50 кВт

На отопление помещений будет израсходовано
8,5×2,5 = 21,5 кВт

Лишнее произведенное тепло
50 – 21,5 = 28,5 кВт
сохраняется в ТА.

Температура, на которую нагревается теплоноситель составляет 35° С. (Разность температур в трубе подачи и «обратки». Определяется замером во время работы системы отопления). Подставляя искомые значения в формулу (4) получаем
28500/(0,8×1,163×35) = 874,5 кг

Эта цифра означает, что для сохранения тепла, выработанного котлом необходимо иметь 875 кг теплоносителя. Для этого понадобится буферная емкость для всей системы объемом 0,875 м 3 . Такие облегченные расчеты позволяют легко выбрать теплоаккумулятор для котлов отопления.

Совет. Для более точного расчета объема буферной емкости лучше обратиться к специалистам.

Способы подключения

Подключение теплоаккумулятора к твердотопливному котлу осуществляется различными способами.

Но в любом случае существует ряд правил, соблюдение которых обязательно:

  • все соединения в системе должны быть резьбовыми или фланцевыми;
  • рекомендуется установка запорной арматуры на магистрали ТА;
  • оснащение КИП входов и выходов ТА;
  • установка фильтров очистки на входах;
  • установка манометра и предохранительного клапана на ТА;
  • предусмотреть установку клапана воздухоотводчика.

План подключения теплоаккумулятора к твердотопливному котлу

Соблюдение этих требований обеспечивает работоспособность и безопасность всей системы отопления. Обвязка твердотопливного котла с теплоаккумулятором осуществляется по различным схемам. На фото показана одна из них. По своей сути она является упрощенной базовой моделью системы отопления. Поняв принцип ее действия можно приступать к самостоятельному монтажу.

Как выполняется обвязка смотрите на видео:

Смесительный узел котлового контура предотвращает попадание холодной воды в котел. В то же время аналогичный узел контура отопления при необходимости подает часть горячего теплоносителя в систему для поддержания в ней заданной температуры.

Балансировочный вентиль позволяет обеспечить одинаковый нагрев всех приборов отопления, на каком бы удалении от котла они не находились. При наличии дополнительных змеевиков и солнечного коллектора на крыше ТА на определенное время превращается в термоаккумулятор. Это позволяет снизить расход топлива для котла. Схема подключения теплоаккумулятора к твердотопливному котлу практически не изменяется.

Схема подключения теплоаккумулятора к твердотопливному котлу

К сведению. Теплоаккумулятор для котлов отопления можно не только подключить, но и изготовить своими руками, что многими уже опробовано.

Теплоаккумулятор для твердотопливного котла позволяет сжигать топливо с максимальным КПД, и увеличивает время между заброской дров. Наряду с ощутимой экономией топлива и комфортной температурой отапливаемых помещений это устройство становится востребованным в каждой системе отопления. Подключение теплоаккумулятора к твердотопливному котлу своими силами больших трудностей не создает.

Видео по теме:

Расчет водяного теплового аккумулятора систем отопления

Запись дневника создана пользователем Андрей-АА, 14.11.14
Просмотров: 99.230, Комментариев: 31

Привожу свои расчеты теплового аккумулятора и рекомендации, которые состоят из четырех частей:
1. Формулы расчета запаса энергии теплового аккумулятора.
2. Расчет мощности нагревателей и расхода энергии.
3. Расчет необходимого объема теплового аккумулятора.
4. Рекомендации при недостаточной мощности сети.

Исходная “формула” для расчета накопленной энергии:
Для нагрева 1 тонны воды на 1*С необходимо 1,16кВт*часа энергии. Значит для нагрева на 40*С – 46,4кВтчаса.
Надо учитывать, что дельта в 40*С это наиболее близкая к максимально- реальной дельте температур в тепловом аккумуляторе. Лучше конечно больше, но заметно больше получается редко, а меньше – не выгодно. Хотя, стремиться повысить эту дельту – надо.

Сначала – про единицы измерения теплопотерь.
Это – Ватты и киловатты.
Теплопотери это – потери энергии в единицу времени.
Т.е., кВт*часы в час (кВт* час / час ). Часы сокращаются, остаются киловатты.
Для этого расчета надо знать теплопотери дома в формате “кВт при дельте температур улица-дом”. К примеру, по последнему СНиПу теплопотери должны быть не больше, чем 50 Вт/кв.метр отапливаемой площади дома при максимально холодной неделе (для Москвы – минус 28*С)). Т.е., если дом – 100кв.м., то по этому СНиПу его теплопотери при -28*С будут 5кВт.
Если Вы хотите отапливать такой дом, то при -28*С на улице Вам надо иметь в сутки 120кВтчасов энергии (5кВт*24часа).
Предположим, что накопление энергии в тепловом аккумуляторе будет идти 7 часов (это – обычно длительность ночного электротарифа). Тогда суммарная мощность нагревателей должна быть 17кВт (120кВтчасов/7часов). А накоплено в тепловом аккумуляторе за ночь будет 85кВтчасов (120кВтчасов минус 5кВт*7часов, которые потрачены на отопление ночью).
Т.е., Вам надо к утру иметь в тепловом аккумуляторе 85кВтчасов при дельте температур в тепловом аккумуляторе (нагрето-остыло) 40*С.
Примечание:
Вообще-то, дом должен быть теплым не в среднем за неделю, а в любую микросекунду, поэтому лично я взял бы для расчетов (при суточном цикле нагрева-остывания теплового аккумулятора) не “самую холодную неделю”, а самую холодную ночь. В этом случае взятые выше -28*С окажутся завышенными. Я бы взял, например, -35*С (для Московии).

Читайте также:  Чистка подошвы утюга

В тонне воды (см. “формулу” выше) при дельте 40*С содержится 46кВтчасов тепла. Это значит, что для накопления 85кВтчасов надо 1,8 тонны воды (85/46).
Все необходимые для Вас перерасчеты под свои условия здесь должны быть линейны, т.е. пропорциональны изменениям площади дома, дельтам температур и теплопотерям.
Для снижения объема теплового аккумулятора можно еще постараться максимизировать дельту температур в нём, сделав её выше 40*С. При отапливаемых полах это вполне реально.

4. Что делать если немного не хватает мощности сети?
1. Дополнительно утеплить дом.
2. В самые морозы закрыть и не отапливать некоторые комнаты.
3. Увеличить подводимую мощность сети (через поставщика э/энергии) и внутреннюю, при необходимости.
4. Включать нагрев теплового аккумулятора не только в ночное время, но (в самые морозы) и днем. А т. к. самые морозы бывают не часто, то и финансовые потери на дневной тариф будут небольшими.
5. Добавить в систему твердотопливный котел – как резервное отопление и как добавка в морозы. Считаю, что при электро-отоплении резервное отопление очень желательно в любом случае. Я для себя в этом вопросе разобрался: Стратегия твердотопливного круглогодичного отопления.
Ну, или заключить с энергетиками жестокий для них договор, чтобы почти никогда (надолго) не отключали э/э. Впрочем, тому кто это сможет сделать надо будет вручить орден “За заслуги перед Отечеством” (и это – не шутка, хоть и забавно звучит).
6. При работе на пределе электро-мощностей можно использовать реле приоритета (реле разгрузки), которые, при необходимости, на короткое время будут отключать мощные нагреватели (а лучше – только часть из них) для возможности использования других потребителей без превышения предельной мощности сети. Если эти “другие потребители” находятся внутри дома, то вся электроэнергия потраченная на них всё равно перейдет в тепло.

Теплоаккумулятор

Несмотря на простоту устройства, и очевидность пользы от использования теплоаккумуляторов, данный вид оборудования пока не очень распространен. В этой статье мы постараемся рассказать о том, что такое аккумулятор тепла и преимущества, которые приносит его использование в системах отопления.

Что такое теплоаккумулятор (буферная емкость) и его назначение.

Назначение теплоаккумулятора (ТА) будет легче описать на нескольких примерах-задачах.

Задача первая . Система отопления построена на основе твердотопливного котла. Постоянно отслеживать температуру теплоносителя на подаче и вовремя подбрасывать дрова нет возможности, в результате чего температура подачи то превышает нужную нам, то снижается ниже нормы. Как обеспечить поддержание требуемой температуры теплоносителя?

Задача вторая . Дом отапливается электрокотлом. Электроснабжение – двухтарифное. Как снизить затраты на электроэнергию, уменьшив энергопотребление днем и увеличив ночью?

Задача третья . Имеется система отопления, в которой тепло вырабатывается теплогенераторами, работающими на различных видах топлива и энергии – напр. газе, электричестве, солнечной энергии (гелиоколлекторы), энергии земли (тепловой насос). Как обеспечить их эффективную работу без потерь выработанного тепла, когда в нем нет потребности, при этом обеспечить дом теплом в период пикового энергопотребления?

Не особо вдаваясь в теорию теплотехники, для всех задач напрашивается решение в виде установки в систему буферной емкости, которая служила бы резервуаром для теплоносителя и в которой его температура поддерживалась бы на заданном уровне. Именно такой буферной емкостью и является теплоаккумулятор. Для решения этих задач, теплоаккумулятор обычно включается “в разрыв” системы с образованием котлового и отопительного контуров. Условная схема включения теплоакумулятора в систему отопления изображена ниже на рисунке.

Рис. Принципиальная схема включения буферной емкости (теплоакумулятора)

С различными способами включения буферной емкости в систему отопления можно ознакомиться в статье “Схемы подключения теплоаккумулятора”.

В настоящее время тепловые аккумуляторы чаще всего используются в системых отопления с твердотопливными котлами. В этих системах использование теплоаккумулятора позволяет реже загружать топливо, обеспечить комфортное обеспечение теплом независимо от колебаний температуры теплоносителя на выходе из котла. Часто буферные емкости устанавливаются с электрокотлами для экономии средств за счет пониженного ночного тарифа и в комбинированных системах с одновременным использованием твердотопливных и электрических котлов.
Теплоаккумулятор (ТА) бывает полезным в системах и с газовыми котлами, особенно, когда минимальная тепловая мощность котла превышает тепловую нагрузку объекта. За счет более продолжительных периодов «загрузки» ТА (нагрева теплоносителя) удаётся избежать «тактования» котла.

Кроме использования в качестве буферной емкости, ТА выполняет функцию гидравлического разделителя. Особенно это свойство теплоаккумулятора востребовано в системах с генераторами тепла, работающих на различающихся видах энергии (в т.ч. альтернативной). Как правило, эти источники тепла работают на специальных теплоносителях, которые не допускают смешения с другими типами, требуют уникального температурного и гидравлического режима, часто несовместимого с режимами контура отопления (радиаторного, теплого пола). Так, например, диапазон температур теплового насоса составляет обычно

5°C, а в контуре распределения тепла диапазон температур может быть значительно больше (10-20°С). Для разделения контуров, теплоаккумулятор может быть оборудован дополнительными встроенными теплообменниками.

Основные функции буферной емкости (теплоаккумулятора):
– накопление и поддержание запаса тепловой энергии в виде определенного объема теплоносителя заданной температуры с возможностью ее использования в нужный период времени или при прекращении генерации тепла основными его источниками;
– организация системы отопления на нескольких генераторах тепла разного типа, которые работают с различными температурными и гидравлическими режимами и с использованием разных теплоносителей, а также в различные временные периоды;
– гидравлическое разделение контуров генераторов тепла и отопительного контура, согласование температурных режимов в различных контурах и создание благоприятных условий для работы оборудования, в частности котлов отопления, с максимальной эффективностью.

Устройство и объем теплоаккумулятора

Типовая конструкция буферной ёмкости.

В базовом исполнении, теплоаккумулятор представляет собой теплоизолированный бак с патрубками подачи и обратки для котлового контура и патрубками для отопительного контура. В самом простом варианте, буферная емкость может иметь всего по одному патрубку – для подачи и обратки.
Если система отопления имеет теплогенераторы на альтернативных источниках энергии, то используются тепловые аккумуляторы более сложной конструкции. Как правило в них имеется один или несколько змеевиков-теплообменников для организации автономных контуров. Емкости для таких систем могут быть укомплектованы насосно-смесительными узлами для различных контуров в заводском исполнении. Дополнительный теплообменник может быть установлен, если теплоаккумулятор используется также для приготовления горячей воды для бытовых нужд.

Рис. Буферная емкость базовой конструкции

Рис. ТА с дополнительным теплообменником

В некоторых случаях в ТА требуется обеспечить качественное разделение слоёв с различной температурой. Для этой цели внутри бака может предусмотрена специальная мембрана. В ряде случаев, в конструкции предусматривается возможность установки электронагревательного элемента.
На видео, которое приведено ниже можно ознакомиться с конструкцией многофункциональной буферной емкости компании Buderus.

Видео. Многофункциональная буферная емкость – теплоаккумулятор Buderus Logalux.

Расчёт ёмкости теплового аккумулятора

Имеется несколько методик расчета объема буферной емкости. Например в одних источниках рекомендуется подбирать ТА из расчета не менее 40 литров на каждый киловатт мощности теплогенераторыа. По другим источникам минимум снижен до 20-ти литров/кВт. Поэтому имеющиеся рекомендации могут не в полной мере отвечать требованиям конкретной системы отопления. Оптимальный объем бака ТА зависит от множества факторов – мощности источника тепла, периодичности выработки тепла, температурного режима отопительного контура, требуемого периода автомномности работы и т.п. На первый взгляд, было бы логично руководствоваться принципом – чем больще ТА, тем лучше, но это правило работает далеко не всегда, так как объем теплоаккумулятора должен быть согласован с возможностью теплогенератора по его наполнению, с учетом экономических факторов (стоимости топлива, электроэнергии и т.п.).
В расчетах, для упрощения, плотность теплоносителя будем принимать равной единице.

Расчет объема ТА по EN 303-5

В качестве примера, приведем формулу подбора теплоаккумулятора для работы совместно с твердотопливным котлом в соответствии с европейскими нормами.

Расчет объема буферной ёмкости по EN 303-5

Vта – Объем теплоаккумулятора, л.;
Тг – Продолжительность горения загрузки топлива при номинальной мощности, час;
Qн – Номинальная тепловая мощность, кВт;
Qп – Потребность объекта в тепле, кВт;
Qmin – Минимальная тепловая мощность котла, кВт.
1,163 – удельная теплоемкость воды (Вт*ч/(кг*К))

Как правило, в расчетах при подборе ТА к твердотопливному котлу, номинальная и минимальная мощность равны.

Пример расчета объема теплоаккумулятора для работы с твердотопливным котлом.

Итого, рекомендуемый объем буферной ёмкости составит Vта=15*3*25*(1-0,3*20/25)=855 л.

Расчет ТА по мощности имеющегося котла

Данный способ расчета напоминает предыдущий и основан на том, что теплоаккумулятор должен вместить все тепло, которое вырабатывает котел за время горения топлива при полной загрузке, при одновременном расходовании его на нужды отопления. Как уже упоминалась в статье “Схема твердотопливного котла”, рекомендуется, чтобы мощность котла превышала максимальную нагрузку системы отопления на

30%. Формула для такого расчета приобретет следующий вид:

Где:
Qн – Номинальная тепловая мощность котла, кВт;
Qп – Потребность объекта в тепле, кВт;
Тг – Продолжительность горения загрузки топлива при номинальной мощности, час;
tmax – максимальная температура теплоносителя в буферной емкости;
tн – расчетная температура подачи в системе отопления.

Пример расчета

Итого, рекомендуемый объем буферной ёмкости составит: V = (39-30) *3/1,163(90-55)= 663 л.

Оценочный расчет емкости теплового аккумулятора

Иногда используется, так называемый, “оценочный” метод расчета объема ТА. Он применяется тогда, когда нужно определить, на какое время хватит накопленного в буферной емкости тепла, например, для отопления дома без использования котла отопления. Принцип расчета такой же, как и при определении объема бойлера, который мы рассматривали в статье о подборе водонагревателя. В расчете мы сначала вычисляем количество тепла, которое накоплено в баке, затем расчитываем на какое время нам этого тепла хватит. Поясним на примере.

Исходные данные:
Потребность объекта в тепле, Qп – 10 кВт;
Ёмкость теплоаккумулятора, Vта – 800 л;
Температура теплоносителя в ТА, Ттн – 80°С;
Расчетная температура подачи в отопительном контуре, Тп – 50°С
Расчетная температура температура обратки, То – 40 °С

1. Сначала определим полезное количество тепла, накопленного в теплоаккумуляторе. К сожалению, мы не можем использовать всю имеющуюся тепловую энергию. Реально (при небольшом приближении) будет использоваться энергия, высвобождаемая при остывании теплоносителя с максимальной температуры (в нашем случае – 80°С) до рабочей температуры в системе отопления (у нас – 50°С). После этого будет запущен котел отопления. Количество тепла (в квт*час) считаем по следующей формуле (для упрощения расчетов плотность теплоносителя примем за единицу):

где: Q- количество тепла, Вт*час, m – масса теплоносителя.

До снижения температуры в баке до температуры подачи(Тп), ТА работает в автономном режиме без запуска котла. Посчитаем, какое время это займёт:

Q= 1,163 * (80 – 50) * 800 = 18608 Вт*час

18608 Вт*час/10000 Вт = 1,86 часа. Таким образом, в автономном режиме теплоаккумулятор будет обеспечивать дом теплом в течение почти 2-х часов.

Если котел отопления (например электрокотел) в этом режиме настроен на температуру, равной температуре подачи; то вместе с работой котла будет продолжаться полезно использоваться и тепловая энергия теплоаккумулятора, пока не сравняется с температурой обратки, а это еще дополнительно съэкономленных 9,3 кВт*часа.

Как произвести расчет теплоаккумулятора для твердотопливного котла?

Использование твердого топлива позволяет эффективно отапливать дом при небольших расходах. Установив теплоаккумулятор для твердотопливного котла, можно сделать его работу более рациональной. При этом уменьшается расход топлива и увеличивается срок эксплуатации отопительного оборудования.

Возможность накапливать тепло позволяет реже производить загрузку топлива и использовать котел в летнее время для горячего водоснабжения. Чтобы правильно выбрать теплоаккумулятор, необходимо произвести расчет его объема, исходя из мощности котла и условий его работы.

  1. Преимущества использования теплоаккумулятора
  2. Расчет емкости теплоаккумулятора
  3. Расчет теплоаккумулятора
  4. Особенности установки теплоаккумулятора

Преимущества использования теплоаккумулятора

Особенность работы твердотопливных котлов заключается в том, что наибольшую эффективность сжигания топлива получают в режиме номинальной мощности. При этом часто теплоноситель разогревается сильнее, чем это требуется.

Избыток тепла можно сохранить, используя аккумуляторный бак, чтобы использовать его после остановки котла. Принцип действия таков:

  • во время работы котла, после того как теплоноситель достиг нужной температуры, происходит нагрев жидкости в дополнительной емкости;
  • аккумуляторный бак, имеющий надежную теплоизоляцию, сохраняет поступившее тепло;
  • после остановки котла и остывания теплоносителя в системе горячая жидкость из теплоаккумулятора направляется с помощью насоса в систему отопления.

При необходимости запуск котла производится несколько раз на высокой мощности до нужной степени нагрева воды в баке. После этого система отопления может функционировать без включения котла, пока сохраняется достаточная температура теплоносителя.

В зависимости от объема теплоаккумулятора и площади отапливаемого дома этот процесс может длиться до двух суток. Кроме возможности уменьшить частоту регулярных загрузок топлива, накопительный бак дает и другие преимущества:

  • сохранение избыточного тепла для дальнейшего использования;
  • предохранение котла от перегрева;
  • возможность параллельного использования отопительных котлов разного типа;
  • увеличение КПД котла;
  • продление срока службы отопительного оборудования;
  • уменьшение расхода топлива;
  • подогрев воды для бытовых нужд.

Совет! Использование резервного аккумулирующего бака снижает ограничение на использование горячей воды в часы пикового потребления.

Расчет емкости теплоаккумулятора

Методика, по которой производится расчет, может быть разной в зависимости от схемы применения. Вот примерная схема подсчетов:

  1. Определение максимальной загрузки топлива. Например, в топку вмещается 20 кг дров. 1 кг дров способен выделить 3,5 кВт·ч энергии. Таким образом, при сжигании одной закладки дров котел отдаст 20·3,5=70 кВт·ч тепла. Время, за которое сгорает полная закладка, можно определить опытным путем или рассчитать. Если мощность котла, например, 25 кВт 70_25=2,8 ч.
  2. Температура теплоносителя в отопительной системе. Если система уже смонтирована, достаточно измерить температуру на входе и выходе и определить теплопотери.
  3. Определение желательной частоты загрузки. Например, возможна загрузка утром и вечером, а днем и ночью обслуживать котел нет возможности.
Читайте также:  Что такое байпас и для чего он нужен в отопительной системе

Расчет теплоаккумулятора

Если за час теплопотери помещения, например, составляют 6,7 кВт, то за сутки это составит 160, кВт. В рассматриваемом примере это составляет немногим больше, чем две закладки топлива. Как было определено выше, одна закладка дров сгорает около 3 часов, выделяя 70 кВт·ч тепловой энергии.

Потребность на обогрев дома 6.7·3=20,1 кВт·ч, запас аккумулирующего бака составит 70-20,1=49,9, то есть примерно 50 кВт·ч. Этой энергии хватит на период 50:6,7 – это около 7 ч. Значит на сутки требуется две полных заклаки и одна неполная.

Исходя из этих расчетов, рассмотрев несколько вариантов, останавливаемся на таком: в 23 часа делается неполная загрузка, в 6.00 и 18.00 – полная. Если начертить график уровня заряда теплоаккумулятора, видно, что максимальный заряд приходится на 60 кВт·ч в 9 утра.

Так как 1 кВт·ч=3600 кДж, запас должен составить 60·3600=216000 кДж тепловой энергии. Запас по температуре (разность максимального показателя воды и необходимого показателя подачи) 95-57=38°С. Теплоемкость воды 4,187 кДж. Таким образом, 216000/(4,187·38)=1350 кг. В этом случае необходимый объем теплоаккумулятора составит 1,35 м3.

Рассмотренный пример дает общее представление о том, как производится расчет емкости аккумулирующего бака. В каждом отдельном случае необходимо учитывать особенности отопительной системы и условия ее эксплуатации.

Особенности установки теплоаккумулятора

Перед установкой оборудования должен быть составлен детальный проект. Необходимо учесть все требования производителей отопительного оборудования. При установке накопительного резервуара должны соблюдаться следующие правила:

  • Поверхность емкости должна иметь надежную теплоизоляцию.
  • На входе и выходе должны быть установлены термометры для контроля температуры воды.
  • Объемные баки чаше всего не вписываются в дверной проем. Если нет возможности внести резервуар до окончания строительства, придется использовать разборный вариант или несколько баков поменьше.
  • На входной трубе желательно наличие фильтра грубой очистки.
  • Рядом с резервуаром должны быть вмонтированы предохранительный клапан и манометр. В самом баке также должен быть воздухоотводящий клапан.
  • Должна быть предусмотрена возможность слива воды из бака.

Совет! Довольно часто наличие теплоаккумулятора является необходимым условием предоставления гарантии производителем твердотопливного котла.

Использование теплоаккумулятора в системе с твердотопливным котлом увеличивает эффективность работы теплогенератора и срок его службы, а также позволяет более экономно расходовать топливо. Возможность более редкой закладки топлива делает пользование отопительным котлом удобнее для потребителя. Расчет необходимой емкости аккумулирующего резервуара должен учитывать тип котла, особенности отопительной системы и условия ее эксплуатации.

Теплоаккумулятор для котла

При проектировании системы отопления основные цели – это комфорт и безотказность. В доме должно быть тепло и уютно, а для этого в радиаторы всегда должен поступать горячий теплоноситель без задержек и скачков температуры.

С твердотопливным котлом это сложно реализовать, ведь не всегда удается вовремя заправить новую порцию дров или угля, а процесс горения сам по себе неравномерен. Исправить ситуацию поможет теплоаккумулятор для котлов отопления.

С простой конструкцией и принципом действия он способен избавить от целого ряда неудобств и недостатков классической схемы отопления.

  1. Зачем нужен
  2. Расчет
  3. Для периодической работы котла в течение суток
  4. Схема подключения
  5. Схема включения с подмешиванием
  6. Своими руками
  7. Российского производства

Зачем нужен

Теплоаккумулятор представляет собой хорошо утепленный резервуар большой емкости, наполненный теплоносителем, водой. За счет высокой теплоемкости воды при нагреве всего объема в емкости аккумулируется значительный запас тепловой мощности, которую можно использовать по назначению в то время, когда котел не справляется или вовсе бездействует.

Теплоаккумулятор фактически повышает объем теплоносителя в контуре отопления, теплоемкость и соответственно инертность всей системы. Для нагрева всего объема потребуется больше энергии и времени при ограниченной мощности отопления, но и остывать аккумулятор будет очень долго. По необходимости горячая вода из аккумулятора может подаваться в контур отопления и поддерживать комфортную температуру в доме.

Чтобы оценить преимущества теплоаккумулятора, проще всего рассмотреть для начала несколько ситуаций:

  • Твердотопливный котел лишь периодически подогревает воду. В момент розжига мощность минимальна, во время активного горения мощность возрастает до максимума, после прогорания закладки она вновь спадает и так цикл повторяется. В итоге температура воды в контуре постоянно колеблется в достаточно большом диапазоне;
  • Для получения горячей воды требуется установка дополнительного теплообменника или внешнего бойлера с косвенным нагревом, что существенно сказывается на работе контура отопления;
  • К системе отопления, построенной вокруг твердотопливного котла, подключить дополнительные источники тепла предельно сложно. Потребуется сложная развязка, желательно с автоматическим управлением;
  • Твердотопливный котел, даже длительного горения, постоянно требует внимания пользователя. Стоит пропустить время закладки новой порции топлива, как теплоноситель в контуре отопления уже начинает остывать, как и весь дом;
  • Часто максимальная мощность котла бывает избыточной, особенно весной и летом, когда не требуется максимальная отдача.

Решением для всех вышеперечисленных ситуаций становится теплоаккумулятор, притом бескомпромиссным и самым доступным в плане реализации и стоимости. Он выступает в роли узла развязки между твердотопливным котлом и контуром (-ами) отопления и отличной базовой площадкой для включения дополнительных функций.

По конструкции теплоаккумулятор может быть:

  • «пустым» – простая утепленная емкость с прямым подключением;
  • со змеевиком или регистром труб в качестве теплообменника;
  • со встроенным бойлерным баком.

С полным «обвесом» теплоаккумулятор способен:

  • Накапливать и сохранять значительный объем тепловой энергии, в первую очередь избыточную, с последующей отдачей его в контур отопления. Даже если пропустить одну или две заправки дров, и котел остановится, температура в доме опустится всего на пару градусов. Для электрокотлов есть возможность установить расписание, по которому трата электроэнергии будет происходить только ночью по сниженному тарифу, тогда как днем тепло будет поступать от теплоаккумулятора;
  • При наличии нижнего теплообменника – подключать дополнительные источники тепла, солнечный коллектор, запасной котел, работающий на газу или дизтопливе, геотермальный тепловой насос;
  • С вмонтированными ТЭНами использоваться в качестве запасного источника тепла на случай, если твердотопливный котел не работает или отключен для профилактики и ремонта;
  • При наличии верхнего теплообменника – для подключения контура ГВС или бойлера косвенного нагрева. Некоторые модели теплоаккумуляторов вместо теплообменника снабжаются готовым бойлером, размещенным внутри основной емкости;
  • Реализовать дополнительную защиту в системах с принудительной циркуляцией на случай отключения электроэнергии, не допуская перегрева воды в котле. Рассматривая емкость как узел гидроразвязки, его можно подключить по смешанной схеме с котлом, выше него и трубами большего диаметра для поддержания естественной циркуляции. В это же время раздача по радиаторам будет осуществляться насосом в принудительном порядке.

Расчет

Мощность ,накапливаемая теплоаккумулятором (ТА), рассчитывается исходя из объема емкости, точнее массы жидкости в ней, удельной теплоемкости жидкости, используемой для его наполнения, и разницы температур, максимальной, до которой может нагреваться жидкость, и минимальной целевой, при которой еще может осуществляться забор тепла от теплоаккумулятора к контуру отопления.

  • Q = m*С*(T2-T1);
  • m – масса, кг;
  • С – удельная теплоемкость Вт/кг*К;
  • (Т2-Т1) – дельта температур, конечной и начальной.

Если вода в котле и соответственно в ТА нагревается до 90ºС, а нижний порог берется равным 50ºС, то дельта равняется 40ºС. Если брать в качестве наполнения ТА воду, то одна тонна воды при остывании на 40ºС выделяет примерно 46 кВт*часов тепла.

Объем0,511,5235
Аккумулируемое тепло при ΔT = 40ºC, кВт/ч23466992138230

Запасаемой энергии должно хватать для целевого использования теплоаккумулятора.

Для выбора требуемого объема теплоаккумулятора необходимо определить:

  • Время, в течение которого должно хватать накопленной энергии в ТА для покрытия теплопотерь дома;
  • Время, за которое должен нагреваться теплоноситель в ТА;
  • Мощность основного источника тепла.

Для периодической работы котла в течение суток

Если он нужен для перевода работы котла только на ночной или дневной режим, когда тепло поступает в течение ограниченного времени, то мощности ТА должно хватать для перекрытия теплопотерь дома за оставшееся время. В то же время мощности котла должно хватать для нагрева ТА в установленный срок и опять-таки для обогрева дома.

Допустим, что используется твердотопливный котел с закладкой дров только днем в течение 10 часов, расчетные теплопотери дома для самого холодного периода года составляют 5 кВт. В сутки требуется 120 кВт*часов для полного отопления.

Аккумулятор при этом используется в течение 14 часов, это означает, что в нем необходимо аккумулировать 5кВт*14часов =70 кВт*часов тепла. Если брать в качестве теплоносителя воду, то потребуется 1,75 тонны или же объем ТА 1,75 м3. Важно, что и котел при этом должен выдать в течение всего 10 часов всю необходимое тепло, то есть его мощность должна составлять более 120/10 = 12кВт.

Если теплоаккумулятор используется в качестве запасного варианта на случай выхода из строя котла, то запасенной энергии должно хватить хотя бы на сутки или двое для покрытия всех теплопотерь в доме. Если в качестве примера взять все тот же дом на 100 м2, то для его обогрева потребуется 240 кВт*часов за двое суток, а теплоаккумулятор, наполненный водой, должен иметь объем не менее 5,3 м3.

Зато в этом случае не обязательно ТА должен нагреваться в короткий промежуток времени. Достаточно полуторного запаса по мощности котла, чтобы накопить нужный объем тепла за неделю или две.

Расчет приблизительный, без учета снижения тепловой мощности радиаторов в зависимости от температуры теплоносителя и воздуха в помещении.

Схема подключения

В самом простом случае теплоаккумулятор включается последовательно между котлом и контуром отопления. Между ТА и котлом устанавливается циркуляционный насос, чтобы горячая вода поступала в верхнюю часть ТА, выталкивая холодную воду с нижней части в котел. Между ТА и контуром отопления устанавливается циркуляционный насос для забора горячей воды из верхней части и транспортировки к радиаторам.

Однако при этом существенно поднимается общая теплоемкость системы, и при начальном запуске отопления придется ждать, пока не нагреется весь объем ТА, прежде чем тепло дойдет до радиаторов.

Еще один вариант включения – параллельно котлу отопления. Данный вариант хорошо показывает себя в сочетании с гравитационной системой отопления. Верхний отвод теплоаккумулятора подсоединяется к самой верхней точке раздатки, а в нижнем точк – к котлу.

Из преимуществ только простота подключения и минимум используемых элементов.

Схема включения с подмешиванием

Лучше всего использовать схему включения с подмешиванием или гидроразвязкой. Используются трехходовые клапаны с термостатом. Теплоаккумулятор при этом устанавливается как отдельный элемент системы, параллельно контуру отопления.

Основная часть автоматики устанавливается на подающем трубопроводе: трехходовой клапан, термостаты, группа безопасности и т.д. По умолчанию трехходовой клапан направляет теплоноситель от котла к радиаторам, пока температура в помещении не достигнет требуемой отметки.

Схема подключения с подмешиванием

Как только необходимости в активном обогреве нет, клапан переводит часть теплоносителя от котла к теплоаккумулятору, сбрасывая лишнее тепло.

При достижении максимальной температуры воды в ТА и целевой температуры в радиаторах, срабатывает датчик, установленный в котле по перегреву, и он отключается. Пока же требуется обогрев или не прогрет теплоаккумулятор, работа котла продолжается.

Если по каким-то причинам котел перестал выдавать номинальную мощность или полностью выключился при снижении температуры на подающей линии, вода из теплоаккумулятора подмешивается в контур отопления, восполняя теплопотери системы.

Использовать можно несколько трехходовых клапанов на раздаче и на обратке и группу термостатов. Как вариант, в продаже имеются готовые сборки для подключения теплоаккумуляторов – блок автоматического подмешивания, например LADDOMAT.

Своими руками

При большом желании можно соорудить аккумулирующую емкость своими руками. В идеале она должна:

  • с запасом выдерживать номинальное давление в системе;
  • иметь расчетный объем;
  • быть защищенной от воздействия коррозии и высоких температур;
  • быть полностью герметичной.

Стандартная форма ТА – высокий цилиндр с полукруглым основанием и крышкой. Соотношение диаметра и высоты подбирается примерно 1 к 3-4, чтобы способствовать лучшему разделению тепла внутри емкости.

В этом случае с самой верхней точки идет забор горячей воды к радиаторам. Чуть выше центра вода отводится к контуру теплого пола, а в самой нижней точке ТА подключается обратная линия к котлу отопления.

Самостоятельно сварить цилиндрическую емкость практически невозможно. Проще возвести параллелепипед со схожей конфигурацией и соотношением сторон. Все углы следует дополнительно усилить.

Емкость обязательно утепляется. Использовать для этого лучше базальтовую или минеральную вату толщиной не менее 150 мм, для снижения теплопотерь через стенки.

Для установки теплоаккумулятора следует подготовить специальную опорную площадку, фундамент, способную выдержать огромный вес оборудования. Даже сам по себе аккумулятор может весить до 400-500 кг. Если же его объем, например 3 кубометра, то в наполненном виде его вес будет превышать 3,5 тонны.

Российского производства

На российском рынке представлено не так много теплоаккумуляторов отечественного производства, так как лишь недавно они стали активно внедряться в системы автономного отопления.

Ссылка на основную публикацию