Электрический ток это направленное движение заряженных частиц

Электрический ток

Электри́ческий ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие – электроэнергетика.

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Содержание

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. [1] Несмотря на это, скорость распространения собственно электрического тока равна скорости света, то есть скорости распространения фронта электромагнитной волны.

Различают переменный (англ. alternating current , AC), постоянный (англ. direct current , DC) и пульсирующий токи, а так же их всевозможные комбинации.

  • Постоянный ток — ток, направление и величина которого слабо меняются во времени.
  • Переменный ток — это ток, величина и (или) направление которого меняются во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
    Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Переменный ток высокой частоты проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Сила и плотность тока

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

По закону Ома сила тока для участка цепи прямо пропорциональна приложенному напряжению к участку цепи и обратно пропорциональна сопротивлению проводника этого участка цепи :

Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительного заряда в токе.

Согласно закону Ома плотность тока в среде пропорциональна напряжённости электрического поля и проводимости среды :

Мощность

При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах

В сплошной среде объёмная мощность потерь определяется скалярным произведением вектора плотности тока и вектора напряжённости электрического поля в данной точке:

Объёмная мощность измеряется в ваттах на кубический метр.

Ток смещения

Иногда для удобства вводят понятие тока смещения. По определению, плотность тока смещения — это векторная величина, равная быстроте изменения электрического поля во времени:

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения в конденсаторе определяется по формуле:

,

где — заряд на обкладках конденсатора, — разность потенциалов между обкладками, — ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Электробезопасность

Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА;
  • минимально ощутимый человеком переменный ток составляет около 1 мА;
  • неотпускающим называется ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного — 50 мА;
  • фибрилляционным порогом называется сила переменного тока около 100 мА, воздействие которого дольше 0.5 секунд с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

Направление тока: от минуса к плюсу или наоборот?

Электрический ток — это направленное (упорядоченное, то есть не хаотичное) движение электрически заряженных частиц или заряженных макроскопических тел. Под заряженными частицами, обычно, подразумеваются электроны или ионы, а под макроскопическими (macroscopic — видимые невооруженным глазом) — крупные частицы, например, заряженные капли дождя. Ток возникает при наличии электрического поля. Разберемся с тем как определяется направление электрического тока.

Электрический ток в разных веществах

Электрический ток возникает в самых разных веществах, которые могут находиться в различных агрегатных состояниях. Рассмотрим некоторые примеры, демонстрирующие возникновение направленного потока заряженных частиц в твердых, жидких и газообразных средах:

  • В металлах имеется много свободных электронов, которые являются главным источником тока;
  • Электролиты — это жидкости, проводящие электрический ток. Водные растворы кислот, щелочей, солей — все это примеры электролитов. Попадая в воду молекулы этих веществ распадаются на ионы, представляющие собой заряженные атомы или группы атомов, имеющие положительный (катионы) или отрицательный (анионы) электрические заряды. Катионы и анионы образуют электрический ток в электролитах;
  • В газах и плазме ток создается за счет движения электронов и положительно заряженных ионов;
  • В вакууме — за счет электронов, вылетающих с поверхности металлических электродов.

Рис. 1. Примеры электрического тока в разных веществах (металлах, электролитах, газах, плазме, вакууме).

В приведенных примерах токи возникают в результате движения заряженных частиц относительно той или иной среды (внутри тел). Такой ток называется током проводимости. Движение макроскопических заряженных тел называется конвекционным током. Примером конвекционного тока могут служить капли дождя во время разряда молнии.

Структура металлов

На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.

Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?

Металлы, как правило, – это поликристаллические вещества (состоящие из множества кристаллов) (Рис. 1, 2).


)

Рис. 2. Структура железа ()

В каком направлении течет ток

За направление тока принято направление движения положительно заряженных частиц; если же ток создается отрицательно заряженными частицами (например, электронами), то направление тока считается противоположным направлению движения частиц.

Рис. 2. Направление движения тока для любой электрической цепи.

Возникает вопрос: почему не был принят очевидный вариант направления, совпадающий с направлением движения электронов? Для того, чтобы это стало понятно, надо немного окунуться в историю физики.

Как направлено электричество (движение)

Движение тока может осуществляться двумя путями. Направление перемещения заряженных частиц связывают с движением электронов, имеющих положительный заряд. Когда ток возникает благодаря отрицательным электронам, тогда направление принимают противоположным их движению. Это характерно для проводников из металла. Но ток может возникать и в жидкости, и газе, в которых частицы свободно передвигаются по любой траектории из-за отсутствия прочной связи между ними. В этом случае носителям тока будут положительные ионы и отрицательные электроны, а электрический ток идет от «плюса» к «минусу».

Вам это будет интересно Особенности коэффициента пульсации

Почему надо знать историю физических открытий

Природу электрических явлений пытались объяснить многие исследователи задолго до открытия электрона (1897 г.). Впервые к пониманию о существовании двух типов зарядов — положительных и отрицательных пришел американский физик Бенджамин Франклин в 1747 г. На основе своих наблюдений он предположил (выдвинул гипотезу), что существует некая “электрическая материя”, состоящая из мелких, невидимых частиц. Он же первым ввел обозначение для электрических зарядов “−” и “+”. Франклин предложил считать, что если тело наполняется электрической материей, то оно заряжается положительно, а если оно теряет электричество, то заряжается отрицательно. В случае замыкания (соединения) цепи положительный заряд потечет туда, где его нет, то есть к “минусу”. Эта плодотворная гипотеза стала популярной, получила свое признание среди ученых, вошла в справочники и учебные пособия.

Конечно, после открытия отрицательно заряженного электрона, эта “нестыковка” реального направления движения с ранее общепринятым была обнаружена. Однако, мировым научным сообществом было принято решение оставить в силе предыдущую формулировку о направлении тока, поскольку в большинстве практических случаев это ни на что не влияет.

В случае необходимости, для объяснения отдельных физических эффектов в полупроводниках и искусственных материалах (гетероструктурах), принимается во внимание настоящее направление движения электронов.

Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель. Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет.

Рис. 3. Изображение купюры 100 долларов США с портретом Бенджамина Франклина.

Движение электронов в металлах до появления электрического поля

То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.

Как мы уже знаем, вокруг ядра атомов движутся электроны.

Что же даёт возможность появления свободных электрических зарядов?

Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).

Рис. 3. Движение электронов внутри металлического проводника ()

Физическое содержание тока смещения

Замечание
Мы знаем, что постоянный ток в цепи с конденсатором не течет, переменный — протекает. Сила квазистационарного тока во всех элементах цепи, если они соединяются последовательно, одинакова. В конденсаторе, обкладки которого разделяет диэлектрик, ток проводимости, вызванный перемещением электронов, идти не может. Значит, если ток переменный (присутствует переменное электрическое поле), происходит некоторый процесс, который замыкает ток проводимости без переноса заряда между обкладками конденсатора. Этот процесс называют током смещения.

Любое переменное магнитное поле порождает вихревое электрическое поле. Исследуя разные электромагнитные процессы, Максвелл сделал вывод о том, что существует обратное явление: изменение электрического поля вызывает появление вихревого магнитного поля. Это одно из основных утверждений в теории Максвелла.

Так как магнитное поле — обязательный признак любого тока, Максвелл назвал переменное электрическое поле током смещения. Ток смещения следует отличать от тока проводимости, который вызван движением заряженных частиц (электронов и ионов). Токи смещения появляются только в том случае, если электрическое смещение ($overrightarrow$) переменно. Объемная плотность тока смещения определяется как:

Готовые работы на аналогичную тему

  • Курсовая работа Ток смещения 440 руб.
  • Реферат Ток смещения 280 руб.
  • Контрольная работа Ток смещения 210 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Именно вследствие этого физическое содержание предположения Максвелла о токах смещения сводится к утверждению о том, что переменные электрические поля — источники переменных магнитных полей.

Следует заметить, что плотность тока смещения определена производной вектора $overrightarrow$, а не самим вектором.

Электронная теория проводимости металлов

В 1900 году немецкий физик П. Друде создал теорию электропроводности металлов. В основе этой теории лежат следующие допущения:

  1. Свободные электроны в металлах ведут себя подобно молекулам идеального газа. Электронный газ подчиняется законам идеального газа.
  2. Движение свободных электронов подчиняется законам Ньютона.
  3. Свободные электроны в процессе хаотического движения сталкиваются только с ионами кристаллической решетки.
  4. При столкновении электронов с ионами электроны передают ионам свою кинетическую энергию полностью.

Согласно данной модели, на отрезке проводника свободные электроны совершают хаотическое тепловое движение. Действующее в проводнике электрическое поле перемещает электроны с небольшой скоростью (скорость дрейфа электронов

0,1 мм/с) вдоль проводника.

Сила тока в проводнике:

I=en S

где n – концентрация свободных электронов в проводнике

– средняя скорость дрейфа электронов

S – поперечное сечение проводника.

С позиции электронной проводимости металлов удалось объяснить причину нагревания проводников при прохождении электрического тока.

Электронная теория проводимости металлов экспериментально подтверждена в 1913 году российскими физиками Л.И. Мандельштамом и Н.Д. Папалекси и в 1916 году американскими физиками Т. Стюартом и Р. Толменом.

Направление электрического тока в проводнике выбрано в сторону движения положительно заряженных частиц.

Отношение заряда, переносимого через поперечное сечение проводника за интервал времени, к этому интервалу времени называется силой тока.

В СИ [I] = 1 А (Ампер)

Для поддержания электрического тока в проводнике необходимо электрическое поле. Его действие характеризуется электрическим напряжением.

В СИ [U] = 1 В (Вольт)

Для поддержания постоянного направленного движения заряженных частиц в проводнике электрическое поле должно совершать работу. Эту работу принято называть работой электрического тока.

Работа сил электрического поля или работа электрического тока на участке цепи сопротивлением R и за время t равна:

В СИ [A] = 1 Дж (Джоуль)

При нагревание проводника растет его температура, следовательно, увеличивается внутренняя энергия. С прекращением роста температуры проводника он начинает передавать окружающим телам некоторое количество теплоты, равное работе электрического тока. Таким образом, формула A=IUt определяет количество теплоты, переданное проводником другим телам.

Для последовательного соединения проводников удобнее воспользоваться формулой:

При параллельном соединении удобно использовать формулу:

Для характеристики электрических приборов удобнее пользоваться физической величиной, получившей название мощность тока.

Мощность электрического тока равна:

В СИ [P] = 1 Вт (Ватт)

§ 3. Электрический ток и электропроводность вещества

Электрический ток. В веществе, помещенном в электрическое поле, под действием сил поля возникает процесс движения элементарных носителей электричества — электронов или ионов. Движение этих электрически заряженных частиц материи называют электрическим током. За единицу силы тока принят ампер (А). Это такой ток, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное 1 Кл. Силу тока иногда измеряют тысячными долями ампера — миллиамперами (мА) или миллионными долями ампера — микроамперами (мкА), а при больших значениях— тысячами ампер — килоамперами (кА), в формулах ток обозначают буквой I (i). В электротехнике широко применяют как постоянный, так и переменный ток. Постоянным называют ток, значение и направление которого в любой момент времени остаются неизменными (рис. 9, а). Токи, значение и направление которых не остаются постоянными, называют изменяющимися, или переменными. Чаще всего в электротехнических устройствах используют ток, изменяющийся по синусоидальному закону, который получают от генераторов переменного тока и трансформаторов (рис. 9, б). От выпрямителей получают пульсирующий ток (рис. 9, в), неизменный по направлению, но меняющийся по величине.


Рис. 9. Зависимости тока от времени: а — постоянный ток; б — переменный синусоидальный ток; в — пульсирующий ток

Электропроводность. Свойство вещества проводить электрический ток под действием электрического поля называют электропроводностью. Электропроводность различных веществ зависит от концентрации свободных (т. е. не связанных с атомами, молекулами или кристаллической структурой) электрически заряженных частиц. Чем больше концентрация этих частиц, тем больше электропроводность данного вещества. Все вещества в зависимости от электропроводности делят на три группы: проводники, диэлектрики (изолирующие материалы) и полупроводники. Проводники обладают очень высокой электропроводностью. Существуют два рода проводников, которые различаются физической природой протекания электрического тока. К проводникам первого рода относятся металлы. Прохождение по ним тока обусловлено движением свободных электронов, вследствие чего их называют проводниками с электронной проводимостью. Проводниками второго рода являются растворы кислот, щелочей и солей (в основном водные), называемые электролитами. Прохождение тока через электролиты связано с движением электрически заряженных частей молекул — положительных и отрицательных ионов, т. е. электролиты являются проводниками с ионной проводимостью. Имеются также вещества со смешанной проводимостью, в которых ток переносится электронами и ионами. К ним относятся, например, газы и пары в ионизированном состоянии. Физическая природа электропроводности металлов. Высокая электропроводность металлов хорошо объясняется на основе электронной теории. Согласно этой теории валентные электроны сравнительно слабо связаны с их ядрами. Поэтому они свободно перемещаются между атомами, переходя из сферы действия одного атома в сферу действия другого и заполняя пространство между ними наподобие газа. Эти электроны принято называть свободными. Свободные электроны / находятся в состоянии беспорядочного движения (рис. 10, а). Однако если внести металлический проводник в электрическое поле, то свободные электроны под действием сил поля начнут перемещаться в сторону положительного полюса (рис. 10, б), создавая электрический ток. Таким образом, электрическим током в металлических проводниках называется упорядоченное (направленное) движение свободных электронов.

Читайте также:  Фото межкомнатных дверей в интерьерах квартир разных стилей


Рис. 10. Схема возникновения электрического тока в металлических проводниках: а — беспорядочное движение электронов; б — упорядоченное движение электронов

Металлоиды имеют на внешней оболочке большое количество электронов и они прочно удерживаются около своих ядер. Поэтому металлоиды, как правило, являются диэлектриками. Скорость прохождения тока. Электрическое поле распространяется в пространстве с огромной скоростью — 300 000 км/с, т. е. со скоростью света. С такой же скоростью проходит и электрический ток в проводнике. Однако каждый отдельный электрон движется в среднем по проводнику со скоростью несколько миллиметров или сантиметров в секунду (эта скорость зависит от напряженности электрического поля). Чем же объяснить такую скорость распространения электрического тока? Причина в том, что каждый электрон находится в общем электронном потоке, заполняющем проводник, и при прохождении электрического тока испытывает непрерывное воздействие со стороны соседних электронов. Поэтому, хотя сам электрон движется медленно, скорость передачи движения от одного электрона к другому (скорость распространения электрической энергии) будет огромна. Например, при включении рубильника на электростанции практически мгновенно появляется ток в каждом участке электрической цепи целого города, несмотря на незначительную скорость движения электронов.

Электрический ток и закон Ома

теория по физике постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

СредаНосители электрического тока
МеталлыСвободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы)Положительные и отрицательные ионы
ГазыИоны и электроны
ПолупроводникиЭлектроны и дырки (атом, лишенный одного электрона)
ВакуумЭлектроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Что такое электрический ток?

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м 2 . Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

В металлах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Рис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

Рис 4. Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.

Рис. 5. Электроток в жидкостях

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

Рис. 6. Электрический ток в средах

Проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.
Читайте также:  Штукатурка стен под обои своими руками: чем штукатурят

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Постоянный электрический ток

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Что лучше на кухне плитка или ламинат – мнения и советы специалистов

На сегодняшний день многим хозяевам приходится выбирать между такими напольными покрытиями, как плитка и ламинат. В статье речь пойдет о том, что лучше на кухне плитка или ламинат, а также будут рассмотрены основные нюансы, преимущества и недостатки использования покрытия в этой комнате.

Керамическая плитка

Керамическая плитка (кафель) – это прочный облицовочный материал, обладающий великолепным дизайном и долгим сроком эксплуатации.

Значительное преимущество заключается в том, что покрытие имеет высокую устойчивость к следующим раздражителям:

  • влага;
  • агрессивное воздействие химических веществ;
  • температурные перепады;
  • механическое воздействие.

В связи с этим наиболее популярные комнаты для укладки кафеля: кухня, ванная, коридор, гостиная и открытые части дома (балкон, терраса). Также кафель является идеальным напольным покрытием для офисов, торговых точек и других помещений с интенсивным потоком посетителей.

Другой положительной стороной керамической плитки является ее экологическая чистота. Данный материал не аккумулирует вредные вещества, что является еще одним аргументом в сторону того, чтобы его выбрать. Все это становится возможным благодаря использованию при производстве кафеля только натуральных материалов (прочитайте также: “Какая плитка лучше для кухни на пол – советы по выбору”).

Имеются и другие преимущества:

  • слабая проводимость электрического тока;
  • инертность;
  • огнеупорность, обуславливающая дополнительную защиту от пожара в помещении. Кафель не позволит распространиться огню через пол. Также при нагреве плитка не теряет своих характеристик и не деформируется;
  • дизайн кафеля может быть представлен в самых разных видах, что обуславливает гармоничное сочетание материала с интерьером помещения, где производится укладка. Сделав фото такой комнаты, любой владелец может быть уверен в успехе процесса продажи жилья.

Имеются у керамической плитки и недостатки:

  • поверхность кафеля всегда холодная. Решить данную проблему можно при помощи организации хорошей отопительной системы. Практичнее всего вмонтировать под плитку систему теплого пола;
  • высокая стоимость плитки в сравнении с другими покрытиями. Формируется цена изделия по нескольким критериям: производитель, размер, фактура и т.д. Не стоит забывать, что дополнительно придется оплатить процесс укладки кафеля.

Несмотря на цену, не рекомендуется экономить на керамической плитке, поскольку низкая стоимость является признаком низкого качества изделий.

Ламинат

Ламинат по статистике использования является популярнее керамической плитки.

Это обуславливается рядом его преимуществ:

  • оригинальный дизайн;
  • стоимость доступна большему количеству владельцев, чем в случае с кафелем;
  • простота укладки;
  • долгий срок эксплуатации.

Основой для производства ламината является древесноволокнистая плита (ДВП). Использование данного материала позволяет ламинат сделать жестче и плотнее. Поверхность ДВП покрывается слоем бумаги, которая позволяет имитировать дощатый пол или паркетное покрытие из любой древесины. Поскольку рисунок на бумаге может быть любой, то ламинат на полу может быть отделан под камень, кафель или даже ковер. Качество бумаги настолько высоко, что найти различия с натуральными материалами очень сложно. Читайте также: “Ламинат под плитку на кухню: виды, преимущества и особенности укладки”.

Чтобы защитить ламинат, поверхность покрывается слоем из меламиновой или акрилатной смолы. В случае ламината высокого качества этот слой имеет в своем составе корунд, обладающий высокой прочностью. Такое покрытие делает пол невосприимчивым к химическому воздействию, появлению пятен, выгоранию под влиянием ультрафиолетовых лучей и т.д.

Ухаживать за ламинатом довольно просто. При обычной уборке комнат достаточно лишь протереть пыльный пол влажной тряпкой. Механическое воздействие на ламинат не является фатальным. Даже габаритный предмет большой массы, падающий на такое покрытие, не оставляет после удара вмятин или царапин. Потому на ламинат можно спокойно устанавливать тяжелую мебель и бытовые приборы (прочитайте: “Ламинат на кухне плюсы и минусы: стоит ли его укладывать на кухонный пол”). Термическое воздействие также не является проблемой: случайно упавший окурок или регулярно используемый обогревательный прибор не оставят на полу следов. Исходя из всего вышесказанного, можно посоветовать ламинат, как надежное покрытие даже для детских комнат.

Читайте также:  Труборез для пластиковых труб: виды, как пользоваться и правила выбора

Однако имеется у такого покрытия и ахиллесова пята – кромки листа. В случае ошибок, допущенных при производстве, края могут раскрошиться со временем, а это значит, что износ покрытия произойдет гораздо быстрее. Потому не стоит экономить на приобретении напольного покрытия, а обращать свое внимание на качественные виды от мировых производителей и осуществлять покупку исключительно в специализированных строительных магазинах. На сегодняшний день авторитетом в данной сфере пользуются изделия из Германии, Норвегии и Австрии.

Вне зависимости от того, насколько плотно стягиваются кромки двух соседних листов, лучше всего создать дополнительный влагозащитный слой, покрыв края любым водостойким составом.

Покрытие для кухни: плитка или ламинат

Изучив характеристики, представленные выше, можно определиться, что лучше на кухне плитка или ламинат, но при этом нужно помнить о сумме, которую вы готовы потратить на закупку напольного покрытия. Если вы не уверены, из чего лучше пол на кухне в вашем конкретном случае, стоит посоветоваться с родственниками.

Рассмотрим разницу между этими материалами:

  • ламинат стоит дешевле, но при этом его срок эксплуатации значительно меньше, чем у керамической плитки. Соответственно выбор по данному критерию может сделать только покупатель;
  • влагоустойчивость является преимуществом обоих материалов. Ламинат подвержен подтоплению, которое возникает в случае, если вода долгое время разлита на полу. Плитка же не имеет такого недостатка, а значит, для кухни такое покрытие будет куда более эффективным;
  • выше говорилось о том, что плитка является холодным покрытием. Конечно, система теплого пола и обогревательные приборы справятся в холодное время года с решением данной проблемы, но она останется проблемой даже летом;
  • в то же время плитка не боится нагрева, который неизбежен на кухне, повышенной влажности, горячих жирных брызг и т.д.;
  • плитка не имеет ограничений по использованию бытовой химии и других чистящих средств для уборки.

В случае совмещения кухни со столовой или гостиной керамическая плитка также рекомендуется к использованию. Обычно в таком помещении часто передвигается мебель, за день проходит большое количество людей и периодически покрытие загрязняется пищевыми отходами, что не является проблемой для кафеля в отличие от ламината.

Советы по выбору материала

Для создания уюта, который очень сложно устроить холодной керамикой, можно комбинировать два рассматриваемых материала. К примеру, зона приема пищи может располагаться на участке покрытом ламинатом, а кафель будет уложен возле плиты, мойки, холодильника и т.д. Если же было решено создать покрытие полностью из керамики, то всегда можно покрыть места с высокой проходимостью ковром, поскольку это позволит избежать хождения по холодному полу. Читайте также: “Делаем комбинированный пол на кухне плитка и ламинат – правила сочетания”.

Если поверхность плиток очень скользкая, то она может стать причиной травм. Избежать этого можно, если приобрести изделия с шероховатой верхней частью или проконсультироваться со специалистами по поводу различных средств, которые можно нанести на покрытия с целью устранения эффекта скольжения. Также специалисты смогут определить параметры плитки, которые будут оптимальны для конкретного помещения.

Все вышесказанное говорит о доминировании кафеля над ламинатом, если выбирается покрытие для пола на кухне.

Ламинат все же имеет определенные преимущества:

  • процесс укладки такого покрытия осуществляется на порядок быстрее и отходов после завершения работ значительно меньше;
  • внешний вид покрытия очень красив. От плитки также можно добиться оригинального дизайна, но выглядеть как ламинат она будет лишь на фото и при визуальном осмотре, не став при этом натуральной древесиной. Читайте также: “Какой ламинат лучше выбрать для кухни – мнения и советы профессионалов”.

Основательно изучив характеристики каждого материала, а также их преимущества и недостатки, несложно понять, что кафель является приоритетным материалом для покрытия полов на кухне. Если же владелец желает применить ламинат, то ему стоит грамотно распланировать зоны в кухонном блоке и комбинировать оба материала. Процесс приобретения и укладки лучше всего доверить специалистам, которые смогут определить оптимальные параметры для каждого из покрытий, а также выполнят замеры и покроют пол в кратчайшие сроки с минимальными затратами денежных средств. Надежнее заплатить профессионалам, чем выполнять такую работу самостоятельно, но в разы дольше и дороже.

Покрытие для пола на кухне

Одно из важных заданий при планировании ремонта — выбрать напольное покрытие для кухни. Это важно не только с эстетической точки зрения, а и с технической. Ведь необходимо правильно подготовить основание под покрытие, а делают это задолго до финишной отделки. Так что какие полы лучше сделать на кухне надо решать заранее.

Наиболее популярные варианты

Если говорят про напольное покрытие для кухни, первыми всплывают два материала — керамическая плитка и линолеум. Их выбирают в большинстве случаев. Хоть и популярные это материалы, но не без недостатков.

Не знаете какие полы лучше сделать на кухне? Давайте разбираться…

Плитка на кухонном полу

С точки зрения практичности керамическая напольная плитка для влажных помещений — лучший выбор. Она не впитывает никакие вещества. Вода, масло, любая другая жидкость останутся на поверхности до тех пор, пока вы их не уберете. Куда жидкость может впитаться — в швы. А чтобы этого не произошло, выбирайте влагостойкую затирку и хорошо заполняйте швы. По практичности и легкости ухода это кухонное напольное покрытие в числе первых.

К плюсам этого вида материала можно также отнести огромный ассортимент. Найти можно любого размера, формы, цвета, с рисунками и без. Выбор действительно большой.

Это были плюсы. Теперь о минусах:

  • По ощущениям напольное покрытие для кухни из плитки «холодное». Чтобы ногам было комфортно, под нее можно уложить электрический теплый пол (а в доме можно сделать и водяной подогрев пола).
  • При падении бьющейся посуды она разобьется в 100% случаев. Причем осколки разлетаются в разные стороны и их потом долго приходится собирать.
  • Падать на плитку очень больно.
  • Некоторые виды очень скользкие даже в сухом виде. Те, которые с шершавой, рельефной поверхностью в этом плане намного лучше — на них не скользишь. Но в «рельеф» забивается грязь и вымывать ее приходится жесткой щеткой, прилагая значительные усилия.

Плитка для напольного покрытия кухни может быть матовой или глянцевой

Как видите, минусов тоже предостаточно. Есть еще одно соображение — на какое основание будет укладываться плитка. Если пол бетонный — все просто. При необходимости его ровняют черновой стяжкой затем можно класть плитку. Если же пол деревянный, лучше всего его разобрать и сделать стяжку по всем правилам, а потому уже класть плитку на готовый пол. В результате общая стоимость ремонта пола будет немалой.

Линолеум на кухне

Второе наиболее популярное напольное покрытие для кухни — линолеум. По традиции начнем с плюсов. Если взять целый кусок линолеума, то по стойкости к воде этот вид покрытия не уступит керамической плитке. При этом укладка займет всего несколько часов, а не дней. Уложить линолеум на пол можно и самостоятельно, но даже если и придется нанимать мастера, то этот вид работ оценивается в среднем в 4-5$ за квадратный метр.

Белый линолеум на кухне с имитацией деревянного пола

Если говорить про ассортимент, то он не меньше, чем у керамической плитки. Варианты есть разные — от гладкоокрашенного, до имитации деревянного пола, ламината или паркета, той же плитки, мозаики и т.д. Правда, чтобы линолеум на кухне служил долго, надо брать коммерческий или полукоммерческий класс, без подложки. Он более прочный, имеет жесткий верхний слой. В условиях дома или квартиры он почти вечный. Но стоит такой материал немало: 25-35$ за квадратный метр — это вполне нормальная цена. Так что по цене получается примерно как укладка плитки.

К плюсам линолеума на кухне также можно отнести более уютную атмосферу, а также то, что он не такой жесткий и, при падении, у некоторых вещей есть шанс «выжить». Моется ничуть не хуже плитки, даже проще — разводов обычно не видно. В общем, неплохой вариант.

Переходим к минусам:

  • За износостойкое покрытие придется выложить немало денег.
  • Материал неэкологичен, хотя есть натуральный линолеум — мармолеум. По цене он не ниже коммерческого, но срок службы намного меньше.

Линолеум в виде плитки — почему бы и нет))

Вроде минусов и немного, но существенные. Еще надо помнить, что укладывать линолеум надо на ровное основание. Не важно какое. Главное — ровное, целое, чистое. Если пол бетонный — можно на него, но он, опять-таки, должен быть ровным. Можно на деревянный пол, но если доски неровные, лучше на них уложить подходящий листовой материал — фанеру, ДВП, ОСБ, ГВЛ. Выбирайте сами. Сверху на ровное основание кладут линолеум, зачастую приклеивая его по всей поверхности. Такое напольное покрытие для кухни будет теплым и долговечным.

Каким еще может быть напольное покрытие для кухни

В этом разделе речь пойдет о менее распространенных материалах и способах. Частично — это новые материалы, частично — не очень популярные из-за дороговизны или не самых подходящих характеристик.

Напольное покрытие для кухни из пробки (слева) и наливных полов (справа)

Ламинат

Ламинат — популярный материал для оформления пола. Он замечательно имитирует деревянную поверхность, создает атмосферу уюта и спокойствия. Цветовые решения есть разные — от практически белых — до почти черных. Есть даже цветные варианты — покрашенное дерево. В общем, с точки зрения эстетики — все хорошо. Неплохо и по ощущениям — ногам комфортно и тепло, моется пол из ламината замечательно, он неплохо амортизирует удары, потому упавшая посуда бьется реже.

Но с точки зрения практичности — уложить на кухне ламинат — не самая блестящая идея. Да, есть влагостойкие виды. Но влагостойкость — это о поверхности, а боковые грани остаются все тем же материалом — прессованной бумагой. Если лужа на полу не убирается долго (все на работе) — несколько часов — то и влагостойкий ламинат разбухает, а после высыхания остается покоробленным.

Даже влагостойкий ламинат после длительного контакта с водой вздувается

Также стоит отметить высокую стоимость влагостойкого ламината (33 класса) — от 10$ до 40$ за квадратный метр. Работа оценивается в 3-6$ за квадрат — от сложности схемы укладки и квалификации мастера. Видимо потому не очень популярен этот тип напольного покрытия для кухонь.

Как стелить ламинат своими руками читайте тут.

Пробковое покрытие

Напольное покрытие из пробки на кухне используют еще реже ламината. Но в этом виноваты не характеристики материала, а его цена — дорогое получается удовольствие. Само покрытие стоит от 15$ до 50$ за квадрат, услуги по монтажу — от 7$ за квадратный метр. Это при условии, что основание — идеально ровное и чистое.

Пробковое покрытие для кухни

Пробка для пола есть на подложке и без нее. На кухню лучше брать без подложки. Подложка такая же как на ламинате — МДФ, а он плохо реагирует на воду (разбухает). При использовании клеевой пробки ее приклеивают к полу на специальный клей, сверху покрывают 2-3 слоями лака, что создает непромокаемую пленку. При таком монтаже даже потоп не страшен.

Напольное покрытие для кухни из пробки — выглядит очень стильно, создает ощущение уюта, легко моется (за счет нанесенного лака). Но если долго вода остается, лак белеет. Вернуть ему прозрачность можно, но возится приходится долго. В общем, красиво, дорого, уютно.

Керамогранит

Напольное покрытие для кухни из керамогранита — долговечное и красивое. Этот материал окрашен в массе, очень плотный и жесткий. Так что потертости, даже если они и образуются, не видны. Материал имеет те же достоинства и недостатки что и керамическая плитка, только стоит дороже и сам материал (от 10$ за квадратный метр) и работы по его укладке — тоже от 10-12$ за квадрат.

Керамогранит бывает полированный и нет

Почему редко используется? Во-первых, это недешевое удовольствие. Во-вторых, ногам холодно, а подогрев неэффективен — плиты толстые, теплопроводность низкая. И в-третьих, смотрится он красиво, но на больших площадях.

Наливные полы или жидкий линолеум

Эта технология появилась относительно недавно, потому не многие знают о такой возможности. В первую очередь наливные полы пригодятся при выравнивании основания. Этот раствор имеет свойство самовыравнивания — его распределяют по поверхности, а выравнивается он сам, образуя идеально ровную поверхность. На это основание можно класть любое другое напольное покрытие, выбранное вами для кухни, а можно сделать финишную отделку по той же технологии- использовать полимерный наливной пол или акриловый с возможностью сделать его с 3D эффектом. Эту технологию называют еще «жидкий линолеум», хоть это и далеко не одно и тоже.

Полимерный и акриловый наливной пол на кухне

Полимерный наливной пол — однотонный, матовый или глянцевый, с разной степенью глянца. Поверхность может быть ровной и гладкой, а может — шероховатой. Акриловый — прозрачный полимер, под который на подготовленное основание укладывается пленка с рисунком. Этот рисунок заливается жидким акрилом, благодаря чему и получается объемное изображение.

По стоимости наливного пола сложно сказать в общем. Все зависит от объема подготовительных работ. Вы же помните, что сначала надо выровнять основание. Причем желательно ровнителем, а потом финишным составом наливного пола чтобы отклонение было не более 1 мм на квадрат. Только нанесение полимерного состава без подготовки -стоит от 5$ за квадратный метр. Если это вариант с 3D рисунком — от 15$. Все подготовительные работы оцениваются отдельно. В общем, затея недешевая, но результат отличный и внешне и по эксплуатационным характеристикам.

Виниловая плитка

Этот материал из новинок. Называется виниловая или ПВХ плитка, дизайн-плитка, или LVT (ЛВТ) от английского названия luxury vinyl tile. Если говорить упрощенно, то это нарезанный на куски виниловый линолеум. Геометрия может быть разной — квадраты, прямоугольники, сложные формы. Укладываться может по тем же схемам что и ламинат или паркет, можно придумывать уникальные комбинации, так как цветов больше, как и геометрических форм.

Ассортимент в одном небольшом магазине и это только один тип

От своего предшественника — линолеума — виниловая плитка отличается формой выпуска (нарезан на куски) и способом укладки. Есть из чистого винила, есть с добавление кварцевого песка. Такой материал называется кварц-виниловой плиткой (иногда пишется слитно — кварцвиниловое покрытие). Кварц-винил более плотный, износоустойчивый. Область применения — зоны с высокой нагрузкой (коммерческие помещения с большой проходимостью). Этот материал в домашних условиях будет служить долго. Если вам такая долговечность не нужна (любите часто менять дизайн), выбирайте из чистого ПВХ (на кухню подойдет 32-42 класс).

Укладка и виды плитки

По требованиям к основанию виниловая плитка предъявляет более жесткие требования. Оно должно быть ровным и жестким. Подходит бетонный, цементный пол, стяжка из ЦСП или самовыравнивающаяся, фанера, ОСП, ДСП. На мягкое пористое основание (старый линолеум) такую плитку класть нельзя. Причем это основание должно иметь перепад не более 2 мм на 2 метра площади с двумя точками экстремума (самой низкой и самой высокой точкой).

Есть несколько разных видов ПВХ плитки и несколько разных способов укладки:

  • Плитка, которая клеится на спецклей (указывается в инструкции какой желательно использовать).
  • Самоклеящаяся. На тыльную сторону нанесен клеевой состав, защищенный бумагой. Перед монтажом ее снимают, прижимают к основанию. Она плитка к другой соединяется встык. геометрия хорошая, на ровном основании проблем не бывает.
  • С клеевыми замками. В этом случае сама плитка к основанию не приклеивается. Покрытие получается плавающим, несвязным и практически монолитным, так как замки широкие — в несколько сантиметров, покрыты клеевым составом.

Клеевой замок на виниловой плитке. Именно этот вариант предпочтительнее как напольное покрытие для кухни

Чем выгодно отличается этот материал от линолеума и ламината — простотой укладки. При любом способе монтажа укладка своими руками — без проблем, с небольшими временными затратами. Самое важное — подобрать рисунок, который вы хотите создать. Режется она обычный канцелярским ножом. По периметру помещения нужно оставлять зазор для компенсации теплового расширения (какой конкретно — указано на упаковке, так как материалы могут использоваться разные).

Плюсы и минусы

Если говорить о цене, то она сопоставима с коммерческим линолеумом, при этом имеет еще более продолжительный срок эксплуатации, проще укладывается и моется (даже модели с рельефом). По виду может быть очень похожа на паркет или ламинат, может — плитку, керамогранит, мрамор и т.п. Под ногами ощущается примерно как ламинат — тепло, но не такая гулкая (не «цокает» при ходьбе).

Поверхность жесткая, не продавливается ни каблуками, ни мебелью (в том числе мебелью на колесиках). Это все — по отзывам уже эксплуатирующих. Из всего этого можно сделать вывод, что это напольное покрытие для кухни — отличный выбор и единственный его недостаток — высокая цена, но он компенсируется длительным сроком эксплуатации.

Комбинированный пол на кухне

Хоть ламинат на кухне и не самый лучший выбор, но многим он нравится из эстетических соображений, также как и керамическая плитка — простотой в уходе. Есть способ — использовать эти два материала в одном помещении, но в разных зонах. наши кухни в основном делятся на две части — рабочую, в которой стоят шкафы, плита и т.п. и обеденную — со столом и стульями.

Сочетание плитки и ламината на кухне

В рабочей зоне кладут плитку или керамогрнанит, в зоне стола — ламинат (можно уложить пробку). Место соединения двух материалов оформляют металлической или пластиковой планкой в тон покрытия или яркой-контрастной.

Ссылка на основную публикацию