Что такое фибролит? Где применяют фибролит? Его достоинства и недостатки

Фибролит этот строительный материал, который заявил о себе еще в конце 20-х годов прошлого столетия.

Что же такое фибролит?

Фибролит является аналогом арболита. Его изготавливают из цемента, воды и древесной стружки (ленты) длинной от полуметра и более. При помощи последнего компонента достигается высокие прочностные характеристики при изгибе и сжатии. Древесные ленты пропитывают раствором жидкого стекла или хлористого кальция. Полученное сырьё прессуют в формах, сушат и получают плиты, называемые фибролитом. Плотность материала составляет в среднем от 0,25 до 0,5 т/м 3 .

Сырье для изготовления фибролита

Согласно с действующим нормативом ГОСТ 8928-81 «Плиты фибролитовые на портландцементе. Технические условия», выпускаемые фибролитовые плиты имеют стандартные геометрические характеристики: длина – 2400 и 3000 мм, ширина 600 и 1200 мм, толщина – 30; 50, 75, 100, 150 мм.

Плиты фибролита делят по плотности материала в сухом состоянии на три марки
Марка плитыПлотность плит в сухом состоянии, кг/м 3Область применения
Ф-300250…350В качестве теплоизоляционных материалов
Ф-400351…450В качестве теплоизоляционно-конструкционных и звукоизоляционных материалов
Ф-500451…500То же

В строительстве плиты фибролитовые используют в качестве теплоизоляционного, конструкционно-теплоизоляционного и акустического материала. Допускаются фибролитовые плиты использовать в помещениях с относительной влажностью не выше 75%.

Фибролитовая плита для утепления ограждающих конструкций

Применение фибролита

Наиболее распространенное применение фибролита является несъемная опалубка в монолитном домостроении, к примеру, при возведении частных домов малой и большой этажностью, а также при реконструкции или ремонте зданий и сооружений. Применение несъемной опалубки из фибровых плит принадлежит к самым простым, быстрым и экономным способам строительства домов. При применении фибролитовых плит не требуется никакой грузоподъемной техники. Стандартные размеры плит и не высокий вес материала делают его очень технологичным в процессе строительства. Обработка фибролитовых плит аналогична обработке древесины. Для создания криволинейных сложной формы конструкций выполняется раскрой плит. Применяя фибролит в качестве несъемной опалубки можно сократить время и трудозатраты строительства почти в два.

Фибролитовые плиты в качестве несъемной опалубки

Использование фибролита возможно при достаточно низких температурах. Высокие теплоизоляционный свойства материала позволяют снизить затраты на непрерывный прогрев бетона, а также проводить заливку бетона на целый этаж здания в зимних условиях.

Плита фибролита имеет хорошие звукоизоляционные свойства. Например, используя фибролит в конструировании полов можно значительно улучшить уровень шумоизоляции до 20дБ. Плита отлично защищает от шумов ударного и воздушного характера. Уникальные свойства плиты из фибролита дает возможность использовать её в качестве подосновы напольных покрытий от плитки до линолеума. Такое изделие не скрипит, не гниет и не разрушается под воздействием влаги.

Высокий уровень влагостойкости современного фибролита позволяет применять его в помещениях с высокой влажностью до 75%. Также применять фибролитовые плиты возможно при возведения бескаркасных межкомнатных перегородок.

Фибролит используется также для теплоизащиты зданий и сооружений. В случае применения двух- или трехслойных вариантов с использованием пенополистирольных или минераловатных плит, теплосопротивление данного ограждения значительно возрастает.

Утепление стен фибролитовыми плитами

Применение плиты фибролита при конструировании крыши обеспечит подготовку плоскости под кровельные материалы, а также тепло- и звукоизоляцию кровли в целом. Фибролит применяют при реконструкции плоских кровель 5…9 этажный типовых домов. Высокий уровень огнестойкости изделия предоставляет возможность кровельщикам наплавлять рулонные покрытия на плиту при помощи открытого пламени. Помимо того, материал отличается легкость монтажа, его можно монтировать под мягкую кровлю в независимости от времени года.

Достоинства фибролита

Итак, сведем все достоинства строительного материала в единый список:

Что такое фибролит? Свойства, характеристики, виды и цена фибролита

Фибролит создан в Австралии в 1910-м году. Изначально материал назвали гераклидом, в честь силача древнегреческих мифов. Подразумевалось, что фибролит — материал столь же стойкий, «непобедимый». Однако поистине таким он стал в 1920-м году. Почему?

Что такое фибролит

Материал фибролит — соединение древесного волокна и цемента. Последний использовали в роли связующего в том самом 1920-м году. Это сработало на популярность, востребованность материала. Для цемента в фибролите равна примерно 40%. Состав и свойства материала регламентированы ГОСТом 8928-81. Соответственно ему в магазинах фибролит часто называют цементно-стружковыми плитами.

Фибролитовая плита

Древесное волокно составляет примерно 60% фибролита. Иначе наполнитель именуется шерстью, поскольку волокно тонкое и длинное. В отличие от обычной стружки, материал в диаметре не превышает половины миллиметра, а вытянут бывает на 5 сантиметров. Специальный станок перекручивает «нити», выдавая подобие пряжи.

Древесная шерсть декоративна, поэтому часто украшает витрины, сундучки с дорогим вином, подарочные корзинки с хрупкими предметами в них. В массе цемента древесная шерсть дает шероховатую поверхность. Кроме цемента, древесную шерсть в фибролите связывают хлористым кальцием. Это минерализатор. В качестве дополнительного связующего и укрепителя могут добавлять жидкое стекло.

Существует родственный фибролиту материал — арболит. Его состав такой же. Отсюда путаница понятий. Однако, соотношение компонентов в арболите и характеристики составных иные. На цемент приходятся не больше 20%, а зачастую 10%. Щепа в арболите может использоваться мелкая и допустима 10% примесь дробленой коры. Древесный материал для арболита — дробленый горбыль и прочие обрезки здоровой, круглой древесины. Фибролит же делают как раз из последней.

Свойства и характеристики материала

Обволакивая вместе с цементом целлюлозу, хлористый кальций делает ее негорючей, исключает гниение. При этом древесная шерсть делает строительный материал легким. Меж волокон остается воздух. Он, как любая газовая среда, плохо проводит тепловые и звуковые волны. Поэтому «окаменевшая древесная щепа» не только крепка, но и не дает строениям вымораживаться, защищает от шумов. При укладке в стяжку пола фибролит улавливает, к примеру, 20 дБ.

Строительство дома из фибролита

К прочим свойствам фибролита относятся:

  1. Огнестойкость. Возгораниям фибролит противостоит подобно камню.
  2. Оптимальная сцепка с финишным покрытием, к примеру, штукатуркой. Отличная адгезия, то есть проникновение одного материала в другой, обеспечивается за счет шероховатой поверхности фибролита. Проникая в его поры, штукатурка закрепляется «намертво».
  3. Легкость. Фибролитые плиты весят примерно в 4 раза меньше цементных.
  4. Плотность в пределах 250—500-т килограммов на кубический метр. Точный показатель зависит от марки фибролита.
  5. Простота в обработке. Панели их фибролита с легкостью сверлятся, пилятся, пробиваются гвоздями. Радует и прочность крепления в фибролитых плитах дюбелей.
  6. Влагостойкость. Применять фибролит можно в помещениях с влажностью около 70%. В большинстве городских квартир, к примеру, насыщенность воздуха парами редко превышает 30%.

Стандартными размерами фибролита являются 2,4 на 0,6 и 3,0 на 1,2 метра. Реже выпускают плиты длиной 3 метра и шириной 60 сантиметров. Еще возможны варианты: 2,7 на 1,25, 3,2 на 1,25 и 3,6 на 1,2 метра. В толщину фибролит равен 3м, 5-ти, 7,5, 10-ти или 15-ти сантиметров. Это варианты плит. Иногда материал выпускают в виде блоков толщиной 40, 50, 60 сантиметров.

Виды фибролита

Существует две родственные классификации фибролита. Первая делит плиты на марки Ф300, Ф400 и Ф500. Число – показатель плотности. Он измеряется в килограммах на кубометр.

Вторая классификация учитывает не только плотность, но и прочность фибролита. Здесь уже 6 марок:

Декоративным фибролит может быть и без покрытия. Для скрепления стружки может использоваться цветной портландцемент. За счет него плиты бывают розоватые, серо-лиловые, голубые, бежевые.

Производство фибролита

Производство фибролита начинается с получения стружки. Нужна не только длинная и тонкая, но и исключительно из хвойной древесины. Материал лиственных пород насыщен сахарами. Они препятствуют схватыванию цементной массы. Бруски хвойной древесины подбирают с прямолинейным расположением волокон, ровные. Подобный материал дефицитен. Таковой становится и хвойная древесина вообще. Это стопорит развитие производства фибролита.

«Кроят» древесину на станках с поступательно-возвратным движением. Ножи зафиксированы в суппорте. Он состоит из резцедержателя, салазок. Полученную древесную шерсть смешивают с цементным раствором и разливают по формам. Массу в них уплотняют с помощью вибрации. Остается вынуть плиты из форм. Это делают через 30 часов после заливки. Дабы набрать прочностные характеристики, еще 7 дней фибролит лежит в цехах. Потом блоки можно отправлять на продажу.

Во времена СССР, когда хвойная древесина не была дефицитной, фибролит выпускали в объеме около 3 тысяч кубических метров в год. Современное производство минимум в 6 раз скромнее. Цеха по прежнему располагаются при деревообрабатывающих предприятиях, но реже.

Применение материала

Фибролит — универсальный строительный материал. Его используют как:

  1. Конструкционный, то есть являющийся элементом конструкций. Можно сложить дом из фибролита. Для этого используют блоки стружкобетона. Из плит часто делают несъемную опалубку для фундамента, стен.
  2. Акустический. В этом случае ставка делается на шумоизоляционные свойства стружкобетона. Его используют в качестве подложки для чистовых полов, для возведения межкомнатных перегородок и звукостудий.
  3. Теплоизоляционный. Плита фибролит годится для утепления фасадов, крыш. В последнем случае стружкобетон закрывают сверху мягким кровельным покрытием типа андулина. На фасадах поверх утеплителя монтируют акриловые или металлические панели. Можно просто заштукатурить.

В качестве теполоизоляционного материала используют наиболее рыхлый фибролит Ф300. Если требуется сделать тепло-конструкционные или шумоизоляционные элементы, используют стружкобетон Ф400.

Фибролит легко распиливается и поддаётся обработке

Пятисотый фибролит больше конструкционный, нежели шумопоглотительный и теплосберегающий. Утеплитель фибролит Ф500 маломощный, поскольку минимально насыщен внутренними пустотами.

Плюсы и минусы фибролита

Цементный фибролит имеет минусы, «вытекающие» из плюсов. Так, пористость материала не только обеспечивает максимальную адгезию со штукатуркой, но и позволяет плитам вбирать воду. Попав в поры фибролита, она может застыть. При этом влага расширяется. Лед буквально разрывает структуру фибролита изнутри. Поэтому в промерзающих помещениях и при наружной отделке зданий материал обязательно закрывается водонепроницаемыми «щитами».

Высокая плотность фибролита марок Ф400 и Ф500 служит гарантом крепости плит, но делает их более промерзаемыми и снижает шумоизоляцию. Легкость обработки фибролита подразумевает столь же простое механическое повреждение материала. Легко пилящиеся и сверлящиеся блоки могут также «непринужденно» раскалываться при падении, лишаться углов при ударах во время переноски.

Влагостойкость фибролита тоже подвергается сомнениям. Небольшие предприятия могоут производить стружкобетон по советским ГОСТам. В этом случае плиты подвержены заражению грибком. Правда, подобное чаще бывает с арболитом, в коем минимальна доля цемента. Кроме большой процентовки последнего, фибролит жидкие нити содержит. Речь о расплавленном стекле.

Наиболее распространённые размеры фибрболитовых плит

Безусловным плюсом является срок службы фибролита. Если соблюдены стандарты производства, материал сохраняет эксплуатационные характеристики в течение 60—110 лет. Последним показателем «хвастаются», к примеру, плиты Green Board. Производитель европейский. Поэтому стоимость продукции выше, чем у отечественных аналогов.

Цена фибролита зависит от размеров плит, толщины, декоративности, процентовки в составе цемента. Нижняя планка — 200 рублей. Максимум — 1100 за плиту. Столько просят за многослойный фибролит максимальной ширины. Если приобретаются фибролитые блоки, цена устанавливается за куб. Он обычно стоит около 2500 рублей. У некоторых производителей стоимость договорная, частично зависит от объема закупки. Еще можно приобрести бывший в употреблении фибролит. В этом случае стоимость стандартной плиты начинается от 50-ти рублей.

Виды, свойства и производство фибролита

Фибролит — это плитный материал, волокнистая структура которого образуется в результате омоноличивания древесной шерсти твердеющим в процессе гидратации минеральным вяжущим веществом.

Отечественное производство магнезиального фибролита было освоено в 1928 г. на базе уральских (г. Сатка) природных магнезитов, обжигаемых непосредственно в местах добычи. Цементный фибролит в стране начали выпускать в конце 40-х годов.

В настоящее время разработан ряд новых разновидностей фибролита на различных вяжущих, однако доминирующее значение сохраняют цементный и, в меньшей степени, магнезиальный фибролит.

Сейчас в СССР выпускается около 1,5 млн. м 3 плит фибролита ежегодно, в основном на портландцементе, что составляет более 6 % общего производства теплоизоляционных материалов. В различных странах цементный фибролит известен под различными названиями: в Бельгии — элтонит, в Швеции — треуллонит, в ГДР — лигнолит, в Австрии — гераклит, в США — порекс, в Чехословакии — свен.

Виды и свойства фибролита

Виды и свойства фибролита определяются видом вяжущего, в зависимости от которого различают цементный, магнезиальный, магнезиально-доломитовый, цементно-известковый, известковый, известково-трепельный, гипсовый.

В зависимости от назначения различают теплоизоляционный фибролит со средней плотностью до 350 кг/м 3 , акустический — 350—400 кг/м 3 и теплоизоляционно-конструкционный — 400—500 кг/м 3 . Основные свойства приведены в табл. 3.34.

Марка фибролита соответствует его средней плотности, которая зависит от расхода вяжущего и усилия прессования при изготовлении. Увеличение расхода вяжущего позволяет получать более пористую и легкую структуру фибролитовых плит за счет распушивания формовочной массы, пониженных давлений прессования и большей прочности в местах контакта древесной шерсти. Однако только простое увеличение расхода вяжущего, без изменения технологических режимов отдельных операций (прессования, разрыхления массы), увеличивает среднюю плотность и теплопроводность материала. Био- и огнестойкость фибролита при этом возрастает. Кроме того, прочность фибролита на изгиб значительно зависит от качества и длины волокон древесной шерсти, режима термообработки.

Фибролитовые плиты не водостойки и нуждаются в защите от увлажнения. Водопоглощение 40—60 % и зависит от плотности и состава. Высокоразвитая структура фибролита с открытой пористостью способствует хорошему звукопоглощению, при толщине 25—35 мм коэффициент поглощения составляет 0,5—0,7.

В защищенном от влаги состоянии фибролит биостоек. Однако при 35%-м увлажнении он поражается грибком.

Фибролит — трудносгораемый материал. Он не горит, а лишь тлеет.

Плиты на основе фибролита легко поддаются механической обработке: пилятся, сверлятся, гвоздятся, а также хорошо окрашиваются и оштукатуриваются.

Сырье для изготовления фибролита

Сырье для изготовления фибролита — древесная шерсть, цемент и минерализатор.

Для получения древесной шерсти используют неделовую, предварительно окоренную древесину, так как в коре содержится значительное количество экстрагирующих веществ, оказывающих отрицательное влияние на твердение вяжущих. В самой древесине содержится широкая гамма органических веществ — лигнин, целлюлоза, гемицеллюлоза, смолистые и экстрактивные вещества, сахараты, минеральные соли, часть которых (например, гемицеллюлоза) под воздействием щелочной среды портландцементного раствора гидролизуется и переходит в простейшие водорастворимые сахараты, оказывающие крайне отрицательное влияние на твердение цементного камня и способные понизить его прочность в 5— 10 раз. После выдерживания древесины на складах в течение до полугода содержание экстрактивных веществ в ней уменьшается за счет их окисления и перехода в труднорастворимую форму.

Древесная шерсть представляет собой длинную и тонкую древесную стружку длиной 200—500 мм, шириной 2—5 мм и толщиной 0,3—0,6 мм. Отклонение толщины ниже допустимого снижает механическую прочность изделий, при повышении толщины свыше оптимальной снижается эластичность плиты, возрастает ее хрупкость.

Допускается частичная замена древесной шерсти обычной стружкой от строгальных станков.

Портланд-, шлакопортландцемент или другое равноценное вяжущее, используемое для производства фибролита, должно быть быстротвердеющим и иметь марку не ниже 400. Для улучшения кинетики набора прочности можно домалывать цемент до более высокой удельной поверхности. Цемент с содержанием 60 % C3S и 12 % С3А является наиболее пригодным для получения фибролита.

Минерализаторы предназначены для нейтрализации вредного воздействия на цементный камень сахаратов и улучшения адгезии цемента с древесной шерстью. В качестве минерализатора используют водные растворы хлористого кальция, растворимого стекла, серно-кислого глинозема, которыми пропитывают или обрызгивают древесную шерсть.

При производстве фибролита марок 300—500 на 1 м 3 продукции расходуется 0,3—0,8 м 3 древесины, 170—270 кг портландцемента марки 400, 6—12 кг хлористого кальция, 21—51 кг условного топлива, 13—25 кВт·ч электроэнергии.

Технология цементного фибролита

Технология цементного фибролита включает подготовку сырья (древесной шерсти), минерализацию и смешивание с цементом, формование, твердение и тепловую обработку плит.

Подготовка сырья заключается в окоривании неделовой древесины, выдерживании ее в течение 4—6 месяцев на открытой площадке для частичной нейтрализации экстрактивных веществ путем перехода их в менее растворимые формы, распиловке древесины на отрезки длиной 0,5 м, получении древесной шерсти на специальных станках.

Шерсть сепарируют воздухом или на грохотах, удаляя пыль и мелочь, затем подсушивают до влажности 22 %, что обеспечивает более глубокое проникновение минерализатора в древесину и большую степень минерализации.

Минерализацию древесной шерсти производят в барабанных смесителях, окунанием порции древесной шерсти в ванну с минерализатором, на шерстотрясах, на конвейерах с перфорированной лентой. При подогреве раствора минерализатора до 40°С минерализация происходит более глубоко и полно.

Формовочную смесь в настоящее время получают по сухому способу, при котором предварительно пропитанную минерализатором древесную шерсть посыпают или опыляют цементом. Влажность шерсти при этом 140—160 %. Если портландцемент содержит менее 50 % C3S, то операцию минерализации древесины можно исключить. Расход цемента зависит от марки фибролита и вида шерсти и составляет 1,9—1,3 кг/кг для марок 300—400 соответственно.

Смесь получают в смесителях, исключающих уплотнение и навивание шерсти на вал в процессе ее перемешивания. Из смесителя фибролитовая масса конвейером со специальным разрыхляющим устройством и валковым разделителем распределяется по формам, в которых прессуется механическими, гидравлическими или пневматическими прессами. Толщина слоя массы тем выше, чем больше предполагаемая степень уплотнения. Так, при изготовлении фибролита марок 300, 350 слой фибролитовой массы в форме в 2,5—3 раза больше толщины готовой плиты, при марках 400, 500 — в 3,5—5 раз.

Читайте также:  Фундамента под кирпичный забор: как залить своими руками

При получении теплоизоляционного фибролита используют давление прессования 0,06—0,1 МПа за счет собственной массы вышележащих в пакете форм и специальной пригрузочной плиты. Более плотные плиты получают гидропрессованием при удельном давлении 0,25—0,4 МПа.

Конвейерный способ позволяет устранить основные недостатки пакетного производства фибролита — цикличность и невысокую производительность. При конвейерном способе фибролитовый ковер постепенно обжимают калибрующими элементами до заданной толщины, после чего разрезают на отдельные плиты и направляют на тепловую обработку.

Тепловую обработку осуществляют в два этапа: низкотемпераратурная тепловлажностная в формах и сушка без форм при общей продолжительности до 48 ч.

На рис. 3.98 показана автоматизированная поточная линия для изготовления фибролитовых плит, работающая следующим образом. Полученная на станке 1 древесная шерсть направляется пневмопроводом 2 на виброгрохот 3, где она освобождается от мелочи и обрабатывается минерализатором, после чего подается в смеситель 5 и смешивается с цементом. Полученная смесь конвейером 6 и сбрасывающим барабаном 7 распределяется в формах 8, расположенных на конвейере 9. Предварительно масса уплотняется под-прессовочным барабаном 10, ковер между торцевыми бортами смежных форм разрезается круглопильным станком 11. После этого заполненные формы направляются в пакетировщик 12, где одновременно фибромасса окончательно прессуется пригрузочной плитой 13, которая ложится сверху на пакет из десяти форм. Пакет плит электропогрузчиком 14 направляют в камеру твердения 15, а затем — в разделитель 17, откуда крышки поступают на конвейер 16, а формы — к распалубочному устройству 18. Далее плиты обрезают на станке 19, штабелируют 20 и направляют под навес 21 для сушки плит.

Отличительной особенностью технологии акустического фибролита является использование более толстой и более узкой шерсти, а также невысокие усилия прессования. Толщина плит 25—35 мм.

Чтобы избежать отрицательного влияния на окружающую среду при производстве цементного фибролита, необходимо стремиться к организации безотходной технологии. Вытяжные установки должны быть снабжены пылеуловительными устройствами и фильтрами. Не допускается сливание отработанного минерализатора в реки и озера. Сточные промышленные воды должны подвергаться химической и биологической очистке в отстойниках очистных сооружений.

При производстве фибролита на шлакощелочном вяжущем исключается процесс длительного выдерживания древесины (4—6 мес). В качестве минерализатора используют мета- или дисиликат натрия, вместо портландцемента — молотый доменный шлак, а тепловлажностную обработку осуществляют при температуре 80—90°С в течение 10 ч.

Фибролит в индустриальном строительстве используют в основном в качестве утеплительного и акустического материала. Цементный фибролит применяют для теплоизоляции в ограждающих конструкциях, устройства перегородок, как утеплитель при устройстве бесчердачных кровель — при этом поверх плит покрытия укладывают фибролитовые плиты, по которым делают цементную стяжку и укладывают кровельный рулонный материал. Можно использовать для изготовления эффективных облегченных фибролито-асбестоцементных панелей. Широко используют при отделке демонстрационных залов кинотеатров, павильонов, машинописных бюро, общественных помещений в качестве декоративно-акустического материала.

На базе фибролитовых составных элементов созданы теплые и легкие сборно-каркасные жилищные строения для сельской местности.

К деревянному каркасу плиты из фибролита крепят гвоздями, к сухим бетонным и кирпичным поверхностям — известково-цементным раствором, в подвалах — горячим битумом.

Основными достоинствами фибролита при использовании его в индустриальном строительстве являются хорошие теплоизоляционные свойства, относительно несложная технология и возможность транспортирования на большие расстояния без ущерба для качества, чем он выгодно отличается от остальных теплоизоляционных материалов.

Применение фибролита в ограждающих конструкциях способствует значительному облегчению стен зданий и экономии стеновых Материалов. Так, фибролитовая стена толщиной 15 см по теплоизоляционной способности равнозначна кирпичной стене толщиной 50 см.

Централизация и укрупнение производства фибролита — главное условие повышения производительности труда и снижения себестоимости продукции. Так, удельные капиталовложения на строительство предприятий мощностью 100—120 тыс. м 3 в год на 25—45 % ниже, чем при производстве мелких предприятий мощностью 10—20 тыс. м 3 в год. Производительность труда на крупных предприятиях в 2—3 раза выше, а себестоимость ниже. Строить их необходимо в районах, богатых сырьевыми ресурсами, прежде всего древесиной.

По данным ВНИИТеплоизоляции, в настоящее время в СССР выпускается около 1450 тыс. м 3 цементных фиброловых плит в год. Преобладающий размер плит — 2400x550x75 мм.

Разновидности схем отопления частного дома

При обустройстве частного дома рано или поздно возникает вопрос выбора схемы системы отопления. На сегодняшний день их существует предостаточно, что неопытный человек может запутаться и выбрать не то, что ему нужно. Монтажники же зачастую рекомендуют то, что выгодно ставить им. Но так как вы попали на эту страницу, с выбором системы в доме все будет куда проще. Сначала мы поделимся основными разновидностями, а в самом конце поделимся своим мнением и выборе схемы отопления дома.

Главный принцип работы отопления

Любой вид отопительной системы является замкнутым. В простом варианте любая схема разводки может быть рассмотрена как кольцо, состоящее из труб. В нем циркулирует горячая жидкость от нагревательного котла в приборы отопления, находясь в них какое-то время. Теплоноситель отдаёт при циркуляции тепловую энергию, и вновь направляется внутрь котла для нагрева. Цикл периодически повторяется.

Любая схема отопления включает в себя:

Базовые виды схем отопления

Все виды схем можно разделить на 4 подтипа: открытые и закрытые, насосные и самотечные.

В самотечной системе частного дома (система с естественной циркуляцией) движение теплоносителя происходит путём естественной циркуляции. Путем соблюдения простых законов физики система монтируется так, что не требует наличия дополнительного насоса. Хорошо подходит для небольших одноэтажных домов

В принудительной схеме водяного отопления частного дома жидкости происходит вследствие действия циркуляционного насоса. При использовании такой системы трубы можно монтировать в стены, в пол, проводить по потолку, прятать их от человеческих глаз. При правильном подборе насоса водяное отопление будет работать успешно. Такие схемы разводки отлично подходят для двухэтажных домов.

Открытая система от закрытой отличаются расширительным баком. В закрытой системе используется мембранный бак. Он позволяет поддерживать в системе нужное давление и компенсирует расширение теплоносителя.

Теперь давайте разберем каждую схему поподробнее.

Самотечная система обогревания, достоинства и недостатки

В этом виде системы отопления частного дома горячая вода, подогретая внутри котла (обычно твердотопливного), движется наверх, после чего оказывается в отопительных батареях. От них тепло идет в помещение и снова направляется в обратный трубопровод. Из него уже попадает в нагревательный котёл. Постоянное движение нагретой воды обеспечивается необходимым наклоном подающего(прямого) трубопровода и обратки, а так же применением труб различного диаметра. Для подачи от котла используются трубы меньшего диаметра, а для обратки, трубопровода, в котором вода направляется в котёл, большего.

Самотечная схема разводки системы водяного отопления частного дома обладает специфическим устройством в виде открытого, соединённого с внешним пространством, расширительного бака, смонтированного вверху трубопровода. Бак предназначается для забора части воды при её нагреве, поскольку этот процесс сопровождается увеличением объема теплоносителя. Расширительный бак, заполненный водой, создаёт гидравлическое давление в системе отопления, нужное для движения жидкости.

При остывании воды её объем уменьшается. Часть жидкости из открытого бака снова поступает в систему трубопровода. При этом обеспечивается необходимая непрерывность циркуляции потока воды.

Самотечная система отопления имеет следующие преимущества:

У самотечной системы отопления есть и недостатки:

Схема отопления с насосом

В частных жилых домах нередко используется отопительная схема с принудительным движением воды. Обеспечивается это воздействием циркуляционного насоса, подключаемым к электросети. В данной системе разводки отопления возможно использование любых материалов для труб, например, полипропиленовых. Также применимы разные способы монтажа отопительных приборов.

Отопительные схемы разводки с принудительным движением воды оборудованы закрытым расширительным баком мембранного типа. Он может быть смонтирован в любой части системы, но чаще монтируется вблизи котла. Соответственно, отопительные системы с принудительным движением теплоносителя часто называют закрытыми.

Однотрубная схема отопления

Как правило, эта схема разводки системы применяется в частных одноэтажных домах и отличается лёгким монтажом, малыми трудозатратами и невысокой стоимостью. Радиаторы подключаются к трубе отопления последовательно. Отвод отработанного теплоносителя не предусмотрен. Такая схема водяного отопления имеет немало недостатков при обогреве частного дома:

Имеются технологические приёмы, с помощью них можно частично избавиться от перечисленных проблем. Улучшить работу однотрубной схемы разводки можно с помощью специального оборудования: термостатических клапанов, радиаторных регуляторов, воздухоотводов, балансировочных вентилей. Их применение несколько повысит стоимость монтажа, но зато позволит понижать или понижать температуру в одном из радиаторов без нежелательных изменений температуры в остальных отопительных приборах.

Двухтрубная схема отопления

Такая система водяного обогрева широко используется в домах любой этажности. Её особенностью является подача воды к радиатору по одной трубе, а отвод – по другой. Происходит не последовательное, а параллельное подключение теплообменников к системе отопления.

Система имеет ряд недостатков. Для её устройства требуется большое количество труб и соединительных элементов, что приводит к повышению степени сложности монтажных работ и к более высокой стоимости всей водяной отопительной системы.

Схема отопления теплыми полами

Теплый пол обеспечивает горизонтальное тепловое излучение, поддерживая более высокую температуру на уровне ног и её снижение до комфортного уровня на большей высоте. В районах с теплым климатом схема может использоваться в качестве единственного источника тепла. В северных широтах её необходимо сочетать с монтажом радиаторной отопительной системы.

Конструктивно система теплого пола представляет собой сеть трубопроводов. Нагрев может производиться от любых источников тепла.

Преимущества системы:

Самотечная система «Паук»

Вертикальная отопительная схема разводки частного дома с верхним разливом без использования циркуляционного насоса получила название «Паук». Основным достоинством является полная автономность от газа или электричества, что особенно востребовано в сельской местности или в дачных поселках. В схеме перемещение теплоносителя происходит за счет разности температур на входе и выходе нагревательного устройства. При условии отсутствия газа и электричества лучше всего использовать твердотопливный котел.

Принцип работы «Паука» основан на законах физики – горячая вода устремляется вверх, вытесняя вниз холодную. В результате нагрева вода поднимается от котла по стояку к радиатору, отдает ему часть своей тепловой энергии и перемещается к следующему до тех пор, пока не вернется обратно в котел. Функционирование системы зависит от точного подбора труб и соблюдения уклонов. Забор воды должен осуществляться выше уровня теплообменников. Котел должен быть расположен ниже. Главным недостатком схемы можно считать достаточно сложные монтажные работы.

Схема «Ленинградка»

«Ленинградка» – одна из самых простых, но тем не мене достаточно эффективных и экономичных отопительных схем разводки частного дома. Она похожа на однотрубную схему, то есть теплоноситель последовательно проходит по всем радиаторам помещения, постепенно теряя температуру нагрева. Магистральная труба размещается вдоль пола и закольцовывает контур от нагревательного устройства. Применять «Ленинградку» лучше всего в одноэтажных домах, чтобы все батареи находились на одном уровне. В этом случае система может работать при естественной циркуляции, но при её монтаже в двухэтажных домах необходимо применять принудительную подачу теплоносителя.

Достоинствами этой схемы являются:

Ленинградка» не лишена существенных недостатков:

Лучевая схема отопления

Лучевая схема разводки водяного отопления является новомодной. При ее использовании горячая вода равномерно распределяется по помещению через коллектор. Степень нагрева жилища регулируется путём изменения нагрева воды и скорости её движения по трубам.

Является усовершенствованной версией двухтрубной схемы. Для распределения теплоносителя используется такой же коллектор, что и в теплом поле.

К основным плюсам лучевой схемы разводки можно отнести:

Единственный недостаток – это цена. За счет использования коллектора и дополнительного количества труб, увеличиваяется и цена системы.

На какой схеме остановить свой выбор?

Давайте решим сразу по поводу однотрубных и самотечных систем. Если вы живете в современном мегаполисе или в близи него, если у вас все в порядке с энергоносителями (со светом в первую очередь), если нет нужды сильно экономить, то эти схемы не рассматривайте.

Появились они во времена, когда с электричеством было плохо, а так же отсутствовали различные виды труб. Приходилось использовать металл. Сейчас все поменялось и эти системы себя изжили.

Самотечные схемы можно реализовывать в отдаленных от цивилизации домах. Например, на вашей даче.

Если захотите использовать радиаторную систему в частном доме, то лучшим выбором будут двухтрубная тупиковая схема отопления или лучевая. Обе системы по работе практически идентичны. Отличаются только реализацией.

Перед использованием водяного теплого пола следует сделать расчет теплопотерь дома. Они помогут понять, хватит ли его в качестве основного отопления или придется использовать еще и радиаторы.

Что такое эффективная система отопления

Котел как раз и должен работать в прерывистом режиме, если не ошибаюсь, это сделано для увеличения его КПД. Ваша автоматика, если не ошибаюсь, называется “Арбат”. Единственное, что горит в перерывах между включениями основной горелки – запальник. Если покрутить винтик на верхней части блока автоматики (есть там такой, рядом с ручкой регулирования температуры), т.е. завернуть его до упора, то основная горелка будет гаснуть полностью и через какое-то время загораться снова (когда горячая вода в теплообменнике заменяется холодной). Низ теплообменника котла почти всегда холоднее верха, т.к. туда поступает более холодная вода (это не касается систем с принудительной циркуляцией – там может быть и по-другому

КПД, если говорить по простому, показывает, сколько энергии сгоревшего газа пошло на нагрев воды по отношению к той энергии, которая пошла на другие цели, например, на нагрев дымохода, воздуха в нем и т.д. Газовый котел со 100-процентным КПД – это такой котел, который не греет ничего кроме воды. Это, как вы понимаете, утопия. КПД электрического котла значительно, более чем в два раза выше КПД газового котла. Это естественно, электричество греет почти только воду. Совсем мало энергии тратится на побочные цели, например, на нагрев провода от котла к розетке.

Однако, есть КПД и у системы отопления в целом. КПД системы отопления в целом показывает, сколько энергии горячей воды тратится на отопление воздуха в том помещении, которое вы отапливаете, по отношению к энергии, которая отапливает стены, воздух, который не нужно отапливать и т.д. КПД системы отопления можно увеличить, например, теплоизолировав котел отопления и те участки труб, которые проходят по не отапливаемым помещениям.

Когда мы говорим о том, насколько быстро система отопления нагревает наши площади, мы говорим не о КПД, а об эффективности системы отопления. Эффективность системы отопления тем больше, чем быстрее, эффективнее производится теплообмен между водой и воздухом. Для теплообмена служат радиаторы отопления. С другой стороны, чем быстрее тепло воды передается воздуху помещения, тем холоднее получится вода на выходе из радиатора, а, значит, для поддержания эффективности системы отопления нам необходимо повысить скорость циркуляции воды и скорость ее нагрева в котле. Мы сделали круг и вернулись к котлу.

Однако, наше положение спасает тот факт, что наша система стремится к равновесию. Равновесие достигается тогда, когда у нас высокий КПД котла сочетается с высоким КПД и эффективностью системы отопления и высоким качеством теплоизоляции жилища. В этом случае температура на выходе котла очень мало отличается от температуры на его входе, поскольку энергия тратится не на нагрев жилища, а только на компенсацию теплопотерь. Это, конечно, ситуация, близкая к идеальной и трудно достижима. Однако, к ней нужно стремиться.

Описанной ситуации невозможно достичь при реализации схемы отопления без циркуляционного насоса. В этом случае скорость циркуляции напрямую зависит от температуры воды и физика процесса порождает циклическое включение и выключение насоса. Упрощенно, это выглядит следующим образом. В верхней части котла происходит нагрев воды. Пока нагрев слаб, слаба и скорость перемещения воды из котла вверх по стояку. Но, поскольку процесс нагрева воды происходит непрерывно, температура воды в верхней части котла увеличивается и скорость ее ухода в стояк увеличивается. Дальше – больше, и вот у нас температура воды в верхней части котла достигла той, на которую рассчитан нагрев. Горелка котла тухнет (или гаснет, кому как нравится), и мы ждем, когда горячая вода переместится в стояк. Поскольку у нас система замкнутая, на место горячей воды приходит холодная и процесс нагрева повторяется.

Читайте также:  Цокольные панели для наружной отделки фундамента

Почему же процесс циркуляции такой медленный? Да потому, что в радиаторах отопления процесс идет еще менее эффективно. В радиаторе движение идет сверху вниз. Горячая вода в радиаторе находится наверху. Она не попадет вниз, пока не остынет. Если у нас в радиаторах не будет остывать вода, то она будет пробкой и циркуляция остановится. То есть, условием прохождения воды по радиатору является разница температуры между верхом и низом радиатора и разница температуры воды в верхней части радиатора и на выходе из котла.

Вывод. Если в самотечной системе отопления температура воды на выходе из котла не выше температуры в верхней части радиатора, а та, в свою очередь не выше температуры в нижней части радиатора то и циркуляции не будет.

Мне могут возразить, что это же, дескать, стандартные условия, других не бывает. Я соглашусь, но добавлю свою ложку дегтя. Предположим, у нас есть хорошо теплоизолированное помещение в 100 кв.м. Для отопления этого помещения мы установили, скажем, 5 радиаторов мощностью 2 кВт каждый, и общей мощностью 10 кВт. Однако, поскольку верх каждого радиатора горячее его низа, скажем в два раза, мы имеем неприятную ситуацию, когда двухкиловаттный радиатор отдает всего полтора киловатта мощности. Получается, что мы имеем не 10 кВт на 100 кв.м., а 7,5. Нам становится холодновато, мы увеличиваем температуру, а это тоже плохо, поскольку уменьшает эффективность нашего котла (больше тепла начинает уходить в трубу), системы отопления (больше тепла начинает расходоваться не по адресу).

Есть у нас в случае самотечного отопления равновесие? Есть, только оно имеет вид качелей.

Вот. Кто не понял, прошу вернуться в начало статьи, а я начну светлую повесть о том, что происходит, когда мы вносим в нашу систему циркуляционный насос.

Включив циркуляционный насос, мы устраняем все естественные пробки, связанные с разницей температур. В нашей системе циркулирует теперь любая вода. Холодная, горячая – любая. Если вода не успела нагреться – она все равно уходит в систему. Так начинается путь к нашему равновесию. Предположим, мы отрегулировали котел на 60 градусов. Пока вода в системе, а не в котле (. ), холодная, наш котел работает на полную мощность. Потом температура повышается, поскольку вода не успевает полностью остыть за один цикл прохода по системе. Когда температура в системе достигает 50 градусов, котел начинает работать уже слабее, но все так же стабильно, без ярко выраженных циклов нагрева и остывания.

А вот тут ВНИМАНИЕ. С этого момента все зависит от наших теплопотерь. Если теплопотери велики, то вода возвращается в котел значительно остывшей, скажем те же 50 градусов. Наш котел при этом работает довольно сильно. Мы достигли равновесия, просто оно не слишком хорошее с точки зрения расхода газа и нашего кошелька. Однако, если теплопотери не велики, помещение замечательно теплоизолировано, то мы достигаем другого равновесия, когда температура на входе равна, скажем, 55 или 56 градусам. В этом случае котел тоже работает, но уже не ревет, а шуршит.

Теперь об эффективности. Если на выходе котла наша температура составляет 60 градусов, а на входе – 56 градусов, то это значит, что в каждом радиаторе верх разогревается до 59, а низ остывает до 57 градусов. Числа, естественно, условные. Это значит, что радиаторы отдают полную мощность, котлу не приходится при этом нагревать воду до 70 и выше градусов и тратить на это дополнительную энергию. Кроме этого, мы получаем замечательную возможность регулировать температуру каждого радиатора в любой комнате. Это значит, что, сделав на кухне и в спальне температуру воздуха пониже, мы имеем дополнительную, и судя по книжкам, существенную экономию газа.

Дополнительно, мы имеем удобство подогрева радиаторов, скажем до 35 градусов, что совершенно невозможно при самотечной системе и, таким образом, имеем комфортную температуру в осенние и весенние месяцы, когда прохладно, но не холодно. И, наконец, мы прокладываем систему отопления трубами малого диаметра. Вы думаете, что это не существенно? Ошибаетесь! Мы уменьшаем количество воды в системе и теплопотери через поверхность труб. Ее становится легче и быстрее нагревать, увеличивается скорость ее оборачиваемости в системе и мы опять же увеличиваем эффективность нашей системы отопления и уменьшаем расходы на газ.

Таким образом, мы тратим жалкие 60 ватт энергии на циркуляционный насос и, тем не менее, экономим на газе. Теория, конечно, очень красивая, но чтобы подсчитать прибыли-убытки нужно быть специалистом, которым я не являюсь. Однако, аспектов экономии очень много. Я уверен, что экономия есть.

Вывод. Нет никакой связи между старт-стопным функционированием газового котла и увеличением его КПД. Для увеличения КПД котла нужно покупать хороший котел, а для увеличения эффективности отопления нужно хорошенько теплоизолировать помещение, грамотно спроектировать систему с тонкими трубами и циркуляционным насосом.

Теперь о горелке, которая не гаснет, а продолжает гореть, когда температура достигла необходимой величины. Тут два аспекта. Во-первых, у меня, как следует из вышеизложенного, температура никогда не достигает предельной величины, и горелке нет смысла выключаться совсем. Во-вторых, полное выключение горелки яркий фактор понижения эффективности (и, кстати, КПД котла). Объясняю. Предположим, у нас горит запальник, а основная горелка выключена. Теперь, предположим, пришло горелке время включиться. В любом случае она не включится сразу. Хотя бы потому, что горелка относительно большая, а запальник горит только с одной стороны. Причем, газ – не электричество. Он зажигается не мгновенно.

Что это значит? Это значит, что в момент включения большое количество газа уйдет в трубу в виде газа, а не огня. Первая порция газа просто не успеет воспламениться или воспламенится прямо в трубе (ее просто догонит пламя). Ну что же в этом хорошего? А если эта первая порция газа попадет в помещение из-за недостаточно хорошей тяги? Я не голословен! Сходите к собственной газовой плите и потренируйтесь со спичкой. Все увидите сами.

Нет уж! Не убеждайте меня! Газовая горелка должна всегда тлеть вместе с запальником.

Маленькое отступление. У меня котел производства города Жуковского. Сам он безымянный и автоматика в нем безымянная. Есть модификации с автоматикой Хонивелл, но она, по отзывам самих же производителей работает хуже штатной и стоит как сам котел, то есть котел с автоматикой Хонивелл в два раза дороже обычного котла. Я котлом очень и очень доволен. Никакого обслуживания он уже много лет не требует. Единственное, что приходится менять – это термопара. Она банально прогарает, где-то за три года.

А вот и про радиаторы и воздух, который по ним гуляет. Тоже подтверждение, что котел не очень правильно работает. Воздух откуда появляется? Как я понимаю, это просто закипает вода, и образовавшийся пар пытается подняться к самой верхней точке системы. Т.к. в системе присутствует насос, то он разгоняет этот пузырь по всей системе. У меня прошлую зиму котел как раз на максимуме работал, постоянно в системе булькало, но у меня расширительный бак на втором этаже как раз над котлом стоит, поэтому этот пузырь поднимался сразу к расширительному баку.

Как вы уже, наверное, поняли, описанная ситуация у меня не возможна, хотя бы потому, что котел отрегулирован на 60 градусов. Так откуда же берется воздух в системе отопления? Я уверен, что воздух берется из самой воды. Возможно, вы знаете, а кто не знает, скажу, что обычная вода из водоема, скважины или водопровода на самом деле является газированной. Налейте воду в трехлитровую банку и поставьте на некоторое время. На стенках образуются пузырьки. Это воздух, который находится в воде в растворенном состоянии. Именно этот воздух, высвобождается из воды и образует пузыри. Когда весь воздух из воды выходит, она становится мертвой и с этого момента ваши котел, трубы и радиаторы перестают корродировать.

На счет закипания скажу следующее. Закипание – это плохо. Закипание возможно в системах с открытым расширительным баком. У меня система закрыта, поэтому, я думаю, что мог бы разогреть свою систему и выше ста градусов без закипания. В ней выросло бы давление, и пар бы не образовывался. Но экспериментировать не буду.

И опять о котлах и еще о ГВС. Я вот свой котел как раз хочу менять на двухконтурный, чтобы была возможность его подключения, как раз, к обычному электрическому накопительному водонагревателю . Летом будет горячая вода от электричества, зимой – от газового котла . Долго искал магазин, где продаются теплообменники для того, чтобы подключиться к имеющемуся котлу, так и не нашел, зато в одном магазине мне рассказали о уже реализованной схеме: газовый котел, через его контур вода поступает в накопительный бак, из бака – к потребителям. До этого у меня уже была мысль так сделать, но останавливало то, что у таких котлов обещали переключение работы котла с отопления на ГВС, т.е. отопление просто отключалось в момент открытия крана с горячей водой. Как оказалось, в наших котлах это не так.

Кстати, какая регистрация может потребоваться для двухконтурного котла в случае замены старого на новый? Это же будет один аппарат. Про газовую колонку я такого же мнения, этого добра в доме не надо, лучше накопительного (но газового!) пока ничего не существует, а на лето будет хватать электрической части. Счетчик на газ в любом случае надо ставить, многие подтверждают, что это выгоднее, чем платить круглый год большие суммы за газ, который идет на отопление.

Скажу свое мнение. Я всю жизнь считал, что двухконтурный котел является комбинацией обычного котла и газовой колонки. Идея эта мне абсолютно не нравится. Во-первых, потому, что я не люблю газовые колонки, во-вторых, потому, что если вдруг система отопления не замкнута и в ней постоянно меняется состав воды, то это значит, что вся система будет подвержена коррозии и не прослужит больше 5-ти лет. Говорю это на основе того, что видел в магазинах и читал в книгах и инструкциях.

Действительно, есть варианты повышения КПД котла отопления, при которых разогрев системы ведется, например, котлом на солярке мощностью 20-30 кВт, а потом поддержание температуры осуществляется тенами значительно меньшей мощности. Мне эта идея начнет очень и очень нравиться уже очень скоро, когда цены на газ будут еще выше и встанет реальная задача повышения КПД котла и системы. Скажу только, что такая комбинированная система в большом почете на западе, где беднягам приходится экономить буквально на всем.

Теперь о системах с дополнительным баком. Это тоже классическая схема, описанная во многих и многих книжках, особенно, ранних годов выпуска. Дополнительный бак называется теплоаккумулятором. Он очень хорошо утеплен и используется в системах с отоплением на твердом топливе для того, чтобы топить только один раз в день. В такой системе два контура. Во время топки происходит нагрев как радиаторов, таки и воды в теплоаккумуляторе. Когда топка заканчивается, вода в системе забирается из теплоаккумулятора. Его должно хватать минимум на 8 часов. Теплоаккумулятор, конечно, должен быть значительного объема и, как я уже говорил, хорошо утеплен. Кроме того, такие системы дороги из-за необходимости использования котлов повышенной мощности (чтобы хватало и на дом, и на теплоаккумулятор), дороговизны утепленного металлического бака и, кстати, в такой схеме необходимо использовать циркуляционные насосы.

Такие схемы не получили должного распространения поскольку были довольно оперативно придуманы дровяные (угольные, торфяные) котлы с топками продолжительного горения.

На счет регистрации ничего не скажу, поскольку процедура зависит от местных властей. Сходите в свою контору, которая вам газ поставляет, и узнайте все доподлинно. Если у вас счетчик, то, как я понимаю, никакой регистрации вообще не требуется, поскольку поставщика газа волнует только показания счетчика и ничего больше.

То, что вы считаете накопительный газовый котел самым удачным решением горячего водоснабжения, поверьте, ваше сугубо личное мнение и оно не является самым распространенным.

Оптимальная разводка отопления в частном доме: сравнение всех типовых схем

При решении задачи обогрева жилья существует множество комбинаций построения системы подачи и отвода теплоносителя. Каждая разводка отопления в частном доме может быть классифицирована по нескольким признакам.

Мы предлагаем разобраться в нюансах обустройства и работы возможных вариантов. Понимание принципов проектирования, плюсов и минусов каждого типа разводки, поможет спланировать геометрию системы и ее устройство с учетом индивидуальных особенностей помещения.

Моделирование оптимальной геометрии контура

Для одного частного дома может быть спроектировано несколько замкнутых водяных контуров, которые будут обогревать разные помещения. Они могут существенно отличаться друг от друга по типу разводки.

При проектировании, в первую очередь, исходят из работоспособности системы, а также оптимальной геометрии с позиции минимизации затрат, простоты монтажа и возможности вписать элементы отопления в дизайн помещений.

Естественная и принудительная циркуляция воды

Нагрев теплоносителя для отопления дома происходит в одном или нескольких устройствах, расположенных внутри помещения. Это могут печи, камины, а также газовые, электрические или твердотопливные котлы.

Давление воды в контуре обеспечивают или за счет использования циркуляционных насосов или выстраиванием геометрии системы, позволяющей создать условия для естественной циркуляции.

Также источником горячей воды может быть централизованная система отопления для нескольких домов. В случае слабого напора возможно подключение циркуляционных насосов для создания дополнительного давления и увеличения скорости перемещения жидкости по трубам.

При выборе варианта с естественной циркуляцией теплоносителя или небольшого давления в трубах при централизованном отоплении необходимо внимательно отнестись к возможности максимального использования физических законов, позволяющих начинать и поддерживать движение жидкости.

Обязательным элементом разводки в этом случае является коллектор разгона. Он представляет собой вертикальную трубу, по которой горячая вода поднимается вверх, затем распределяется по приборам отопления и, потеряв начальную температуру, стекает вниз.

По причине разной плотности возникает перепад гидростатического давления горячего и холодного столба жидкости, который является движущей силой для циркуляции воды.

Вертикальная и горизонтальная разводка

Подвод горячей воды к радиаторам может быть осуществлен разными способами. Разводку условно делят на вертикальную и горизонтальную, по положению труб (стояков), подающих воду непосредственно к радиаторам отопления.

Вертикальные схемы с верхней подачей горячей воды максимально используют разницу гидростатического давления между теплым и холодным сегментами контура, поэтому их практически всегда применяют при естественной циркуляции, а также при низком давлении в системе.

Кроме того, такие схемы работоспособны при аварийном отключении насоса, которое может наступить по причине его поломки или отсутствия электроэнергии.

Разводку с нижней подачей практически не применяют при отоплении с естественной циркуляцией. В случае наличия хорошего давления в системе ее использование оправдано, так как у такой схемы существует два значительных плюса, относительно альтернативного варианта.

Горизонтальную схему разводки отопления используют для одноэтажных частных домов. Если здание имеет два или более этажа, то ее часто используют в случае, когда с позиции дизайна вертикальные стояки нежелательны.

Горизонтальные трубы, подающие и отводящие воду можно органично вписать в интерьер помещений, а также спрятать под пол или в ниши, расположенные на уровне пола.

Выбор одно- или двухтрубного варианта

Подвод горячей воды и отвод охлажденной для системы отопления частного дома можно производить с помощью одной или двух труб. У каждого варианта есть положительные и отрицательные стороны, а также особенности использования в зависимости от типа разводки.

Использование однотрубной схемы подключения

Схему водяного отопления частного дома с использованием одной трубы для подачи горячей и отвода остывшей воды называют однотрубной. Главное преимущество такой системы заключается в минимизации длины труб.

Основные плюсы варианта:

Основным минусом однотрубного отопления является постепенное уменьшение температуры воды, которая проходит последовательно через все радиаторы в контуре.

Поэтому приходится использовать несколько большую площадь поверхности последних радиаторов (большее число колен), что часто нивелирует ценовую выгоду от минимизации длины труб.

Кроме того, в связи с этим недостатком, существуют ограничения для одного контура на количество подключаемых радиаторов. Если их будет слишком много, то последние по ходу движения теплоносителя практически не будут излучать тепло.

Кроме того, возникает проблема при расчете теплоотдачи. Здесь необходимо учитывать, что отключение первых радиаторов от системы отопления ведет к увеличению температуры входящей воды для последующих устройств.

Применять однотрубные схемы с вертикальной нижней разводкой бессмысленно, так как длина труб будет такой же, как и двухтрубного варианта, что нивелирует все плюсы, но оставляет минусы.

Подключение отопительного прибора, как правило, производят через байпас, чтобы иметь возможность отключить любой из них без остановки циркуляции воды по контуру.

Для экономии на кранах можно не делать обход воды через отводок, но тогда придется останавливать работу этой части системы и сливать воду при необходимости замены или ремонта радиатора.

Самым экономным вариантом является использование одной стальной трубы диаметра 1,5-2 дюйма без радиаторов отопления. Отсутствие кранов и фитингов делает такую систему также самой практичной по причине минимизации риска возникновения протечек или прорывов воды.

Подробно о расчете однотрубной системе отопления читайте в этой статье.

Применение двухтрубного варианта отопления

Схему отопительного контура, когда одну трубу используют для подачи горячей воды к отопительным приборам, а вторую – для возврата охлажденной называют двухтрубной.

Ее основные преимущества:

Основным минусом такой разводки является некоторое увеличение метража труб.

Это ведет к некоторым к дополнительным недосаткам:

Количество фитингов и кранов при двухтрубной системе почти такое же, как и при однотрубной.

В зависимости от относительного движения горячей и охлажденной воды схемы двухтрубной разводки подразделяют на два типа:

Попутная схема. Оба потока двигаются в одном направлении и, таким образом, длина цикла оборота теплоносителя для каждого радиатора одинакова. В этом случае происходит равный по скорости их нагрев при запуске системы отопления.

Тупиковый вариант. Направление движения горячей и охлажденной воды встречное. Нагрев ближних к котлу радиаторов происходит быстрее.

Чем меньше скорость воды, тем более заметен этот эффект, поэтому при естественной циркуляции прогрев одних помещений будет происходить значительно медленнее, чем других.

Если используют циркуляционный насос или расстояние между первым и последним радиатором в контуре незначительное, то эффект неравномерного нагрева при тупиковой двухтрубной разводке незаметен. Тогда выбор в пользу того или иного варианта обусловлен исключительно соображениями удобства проведения обратной трубы.

Включение в систему распределительного коллектора

Популярным в последнее время способом организации водяного отопления является так называемая “лучевая схема” с применением распределительного коллектора.

Такой метод разводки надежно работает только при хорошем давлении воды в системе, поэтому его не используют при естественной циркуляции.

Лучевая система подключения радиаторов

Наиболее равномерное и управляемое разделение потока теплоносителя по приборам отопления можно осуществить с помощью распределительного коллектора.

Устройство включает в себя две гребенки, в одну из которых горячая вода поступает из котла и распределяется по радиаторам, а в другую охлажденная вода возвращается и направляется обратно к котлу.

Подключение радиаторов через распределительный коллектор происходит параллельно, поэтому при такой разводке достигается минимальная разница температуры теплоносителя, подводимого к приборам отопления.

Это значительно облегчает расчет параметров радиаторов на стадии проектирования, а также позволяет легко регулировать мощность каждого прибора в период эксплуатации.

Вторым значимым плюсом такой разводки является возможность управления параметрами подачи теплоносителя ко всем приборам из одного места. Коллектор помещают в специальный шкаф с доступом к индикаторам и элементам управления: вентилям, кранам и насосам.

Это удобно с позиции регулирования микроклимата дома и позволяет легче вписать радиаторы в интерьер помещения.

К минусам систем с коллекторной схемой разводки отопления следует отнести максимальную длину труб подвода и отвода воды к радиаторам. Этот вариант является самым дорогим по стоимости элементов контура и самым сложным при монтаже, а также требует определенной квалификации.

Как правило, трубы в лучевой разводке отопления монтируют в стяжку пола. Это означает, что проектировать и устанавливать такую систему необходимо при строительстве или капитальном ремонте частного дома.

Выполнить коллекторный вариант для подсоединения радиаторов или изменить геометрию контуров в помещениях с уже проведенным внутренним ремонтом достаточно сложно. Это второй существенный минус разводки такого типа.

Правила использование теплого пола

Комфортный и очень популярный способ обогрева жилых помещений – обустройство теплого пола. Если отапливаемая площадь небольшая, то можно обойтись одной трубой, помещенной в стяжку пола.

Для больших площадей использование единственной трубы невозможно по следующим причинам:

Поэтому, при значительной площади теплого пола, использование нескольких труб является не пожеланием, а необходимостью.

В этом случае подключение осуществляется через распределительный коллектор.

Часто коллектор снабжают смесительным узлом, для регулировки температуры воды, подаваемой к трубам теплого пола. Дело в том, что для радиаторов отопления, как правило, используют жидкость с температурным диапазоном 70-80°С, тогда как для теплого пола необходимо около 40°С.

Регулировка температуры через смеситель отличается надежностью, что очень важно, так как превышение температуры может вызвать существенную деформацию покрытия пола: линолеума, ламината или паркета.

Выводы и полезное видео по теме

Схематичное представление разводки отопления в двухэтажном доме большой площади. Двухтрубная попутная и тупиковая система и теплый пол, подключенные через коллекторы. Исключение конфликта циркуляционных насосов с помощью гидрострелки:

Лучевая схема для обогрева двухэтажного здания. Так как чистовая отделка еще не проведена, то хорошо видна вся разводка. Нюансы укладки труб на пол под бетонную стяжку:

Мнение практикующего мастера по установке систем отопления о различных схемах, применяемых в частных домах. Обзор плюсов и минусов естественной циркуляции, однотрубной, двухтрубной попутной и тупиковой, а также коллекторной разводки:

Представленные разводки для отопления домов являются типовыми и могут быть модифицированы с учетом геометрии помещений, необходимых значений температуры или других факторов. При модификации схем необходимо соблюдать законы и основные положения физики, гидравлики, материаловедения и других дисциплин.

В случае решения сложных или нестандартных задач лучше обратиться к специалистам, потому, что переделка систем отопления может выйти даже дороже, чем их моделирование и монтаж.

Если возникли вопросы или есть желание поделиться личным опытом по разводке отопления в своем доме, пожалуйста, оставляйте комментарии к этой статье. Вы можете дополнить свой отзыв фотографией – форма для связи расположена ниже.

Система отопления с естественной циркуляцией

Система водяного отопления с естественной циркуляцией в удаленном от города частном или дачном доме – решение, востребованное в местности с нестабильным электроснабжением. Кроме того, гидравлическая система не требует финансовых вложений в электрооборудование, без которого не обойтись при обустройстве радиаторного обогрева с подачей теплоносителя насосом.

Энергонезависимая система отопления доступна для самостоятельного расчета и монтажа.

Функционирование самотечной системы

Схема отопления частного дома с естественной циркуляцией обладает рядом достоинств:

Циркуляция в такой системе обеспечивается за счет того, что плотность жидкости в результате нагревания уменьшается (она становится легче), а в ходе остывания плотность возвращается к первоначальной.

В самотечной конструкции практически отсутствует давление – расчеты показывают, что на 10 метров напора водяного столба давление составляет 1 атмосферу. Таким образом, гидростатическое давление в отопительной системе одноэтажного сооружения составит 0,5-0,7 атм., а в трубопроводе двухэтажного дома – не превысит 1 атм.

Гравитационная циркуляция происходит благодаря расширению и уменьшению плотности нагреваемого теплоносителя – он поднимается по вертикальному разгонному участку и с верхней точки перемещается вниз по трубопроводу, смонтированному с уклоном и проходящему через последовательно подключенные приборы отопления, на пути обратно к котлу.

К трубопроводу с самотечным перемещением воды подсоединяется расширительный бак – резервуар для «излишков» теплоносителя, который образуется за счет теплового расширения жидкости. Буферная емкость (мембранная или открытая) монтируется в верхней точке контура на подающую трубу.

Отопительная самотечная система способна функционировать в комплексе:

Виды самотечных систем

Планируя смонтировать отопление частного дома с естественной циркуляцией своими руками схемы подбирают в соответствии с планируемой производительностью системы и особенностями здания.

Отопительные контуры с самотечным движением теплоносителя делятся на типы по разным параметрам:

Чтобы определить оптимальный вариант, необходимо произвести гидравлические расчеты с учетом расположения и диаметра труб, принять во внимание характеристики котельного агрегата и тепловые потребности помещений. Расчет лучше доверить профессионалам, так как даже небольшие неточности негативно повлияют на эффективность обогрева дома.

Закрытый тип

Закрытая система безнасосной циркуляции теплоносителя с успехом применяется для отопления одноэтажного и двухэтажного дома. Функционирует она следующим образом:

Установка мембранного бака в самотечный отопительный контур снижает риск коррозии металлических элементов системы. Но в России такое решение используется относительно редко, так как стоимость мембранного бака в разы превышает затраты на покупку или самостоятельное изготовление емкости открытого типа.

Открытый тип

Принцип функционирования тот же, что и у закрытого варианта. Но в этом случае излишки теплоносителя вытесняются в бак открытого типа, который монтируется под потолком помещения или на чердаке.

Открытый бак представляет собой резервуар с негерметичной крышкой, который снабжают аварийным переливом – трубой, выведенной за пределы чердака на улицу или подключенной к канализации.

К недостаткам открытой системы относится постоянное поступление кислорода в теплоноситель, что ускоряет коррозию металла, из которого изготовлены элементы контура. Происходит и завоздушивание трубопровода – чтобы избежать этого, радиаторы крепят под небольшим уклоном и в верхней части монтируют автоматические воздухоотводчики – краны Маевского.

Помимо этого, жидкость из бака открытого типа испаряется и требуется регулярно подливать воду, чтобы открытая система могла нормально функционировать. Подливают воду в бак вручную из ведра, либо подводят водопроводную трубу с вентилем.

Преимущества баков открытого типа – доступная стоимость и возможность своими руками изготовить резервуар необходимых габаритов.

Однотрубный контур

Однотрубная система отопления с естественной циркуляцией не относится к эффективным. Она не подходит для прогрева помещений двухэтажного дома и применяется в одноэтажных зданиях небольшой площади.

Теплоноситель проходит по разгонному участку трубопровода вертикально вверх, затем попадает в трубу, которая ведет к горизонтальному трубопроводу, последовательно соединяющему радиаторы отопления. От крайнего радиатора остывший теплоноситель возвращается напрямую в котел.

При такой схеме подключения приборов отопления температура радиаторов снижается по мере удаления от подающего стояка – это серьезный недостаток системы. Чтобы повысить эффективность, используют байпасы – соединяют перемычками подающую трубу в тех местах, где подключены радиаторы. Это способствует более равномерному прогреву помещений.

К преимуществам однотрубной системы относятся простая конструкция, минимальные финансовые расходы на ее монтаж. Кроме того, не требуется монтировать трубы под потолком, ухудшая интерьер помещения.

Однотрубная горизонтальная схема даже при условии точных расчетов редко оправдывает себя, если речь не идет об отоплении двух-трех небольших помещений одноэтажного дома. В остальных случаях ее модернизируют, добавив циркуляционный насос.

Двухтрубный контур

Конструктивные особенности самотечного двухтрубного контура:

Двухтрубная самотечная система отопления частного дома отличается от однотрубной тем, что во все радиаторы подается не успевший остыть теплоноситель, благодаря чему:

Двухтрубная система отопления с разводкой верхней и нижней проста в монтаже и эффективна, ее можно использовать для обогрева двухэтажного дома.

Особенности расчета

Расчет системы отопления с естественной циркуляцией значительно сложнее подготовки проекта отопительной системы с принудительной подачей теплоносителя. Так как давление в контуре отсутствует, на работоспособность системы напрямую влияет количество поворотов трубопровода, угол уклона каждого отрезка. Неправильный расчет или погрешности в монтаже отражаются на функциональности контура.

При расчете безнасосного контура принимается во внимание:

Рекомендуемый уклон труб

При расчетах следует опираться на строительные нормы для отопительных систем с самотечной циркуляцией (СНиП 41-01-2003 для гравитационных систем). На перемещение теплоносителя в трубопроводе негативное воздействие оказывает гидравлическое сопротивление в сложных местах – на поворотах, в углах и т.д.

Согласно СНиП, трубы монтируются под уклоном не менее 10 мм на 1 метр длины. Иначе системе грозит завоздушивание, плохой прогрев дальних радиаторов.

Выбор труб

От материала изготовления трубопровода зависит гидравлическая сопротивляемость контура, его устойчивость к коррозии и теплотехнические параметры, технология монтажа. В список востребованных материалов входят:

Диаметр труб

Чтобы рассчитать диаметр труб, требуется:

  1. Выполнить тепловой расчет помещений и прибавить к результату около 20%.
  2. Рассчитать сечение трубопровода исходя из соотношения тепловой мощности и внутреннего сечения трубы (значения указаны в таблицах СНиП).
  3. Подобрать диаметр трубы, базируясь на выполненных теплотехнических расчетах и с учетом материала изготовления труб. Для стальных труб минимальный размер внутреннего сечения составляет 50 мм.

Чтобы самотек был интенсивнее, применяют следующий принцип: диаметр подающей трубы после каждого разветвления должен быть меньше предыдущей на 1 размер. Обратка должна собираться с расширением.

Таким образом, расчет позволяет определить минимальный диаметр подающей и обратной трубы, относительно этого значения определяются параметры труб на разных участках системы согласно подготовленной схеме для одноэтажного или двухэтажного дома.

Вид розлива

Естественная циркуляция воды в системе отопления зависит от принципа подачи теплоносителя от котла к отопительным приборам. Различаются контуры с нижним и верхним розливом.

Нижний розлив дает возможность обойтись без монтажа высоких вертикальных труб – коммуникации прокладывают на уровне пола. Такой вариант пригоден только для однотрубных контуров и относится к малоэффективным без установки циркуляционного насоса.

Верхний розлив – оптимальный вариант, поскольку распределительная труба двухтрубной системы располагается под потолком и обеспечивает активную подачу нагретого теплоносителя в каждый радиатор, из которого остывшая вода уходит в трубу обратки, размещенную вдоль пола. Для однотрубной системы розлив верхнего типа также предпочтительнее.

Двухтрубная система отопления с верхним розливом

Выбор теплоносителя

Теплоносителем может служить вода или антифриз. Для самотечной системы предпочтительнее использование воды, поскольку у антифриза выше плотность и меньше теплоотдача, для его нагрева требуется больше тепловой энергии – то есть, расход топлива выше. Если в системе устанавливается мембранная буферная емкость, ее объем должен быть больше, чем у бака для теплоносителя-воды, так как антифриз расширяется сильнее.

Использование «незамерзайки» имеет смысл в том случае, если дом в зимний период отапливается нерегулярно с большими перерывами. В этом случае воду пришлось бы постоянно сливать, чтобы трубы не разорвало при перемерзании.

Заключение

Устройство безнасосной системы отопления позволяет сделать свой отапливаемый дом энергонезависимым на случай перебоев с электропитанием. Такая система подключается к отопительному котлу без электрооборудования для регулировки мощности или к обычной твердотопливной печи с водяным теплообменником в топочной камере.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *